PHA 5127 Case Study II Fall 2002

Review of important equations:

Extraction ratio:
$$E = \frac{C_{in} - C_{out}}{C_{in}}$$
 Clearance: $Cl = Q \cdot E$ and $Cl = k_e \cdot V_d = \frac{Dose}{AUC}$

Well-stirred model:
$$E = \frac{f_u \cdot Cl_{\text{int}}}{Q_H + f_u \cdot Cl_{\text{int}}}$$
 Hepatic clearance: $Cl_H = \frac{Q_H \cdot f_u \cdot Cl_{\text{int}}}{Q_H + f_u \cdot Cl_{\text{int}}}$

Bioavailability: F = 1 - E

High extraction
$$(f_u \cdot Cl_{\text{int}} >> Q_H)$$
: $E \approx 1$ and $Cl_H \approx Q_H$ and $F \approx \frac{Q_H}{f_u \cdot Cl_{\text{int}}}$

$$\text{Low extraction } (f_u \cdot Cl_{\text{int}} << Q_H) \text{: } E \approx \frac{f_u \cdot Cl_{\text{int}}}{Q_H} \text{ and } Cl_H \approx f_u \cdot Cl_{\text{int}} \text{ and } F \approx 1$$

Question 1:

Theophylline is known to be a low hepatic extraction drug while nicotine is a high hepatic extraction drug. Predict the changes in E, Cl_H and F under different scenarios for these two drugs.

Scenarios	Theophylline			Nicotine		
	Е	Cl_H	F	Е	Cl_H	F
Enzyme						
induction						
More						
binding						
Higher						
hepatic						
blood flow						
Higher						
V_{d}						

Ouestion 2:

A 75kg male patient was given a single i.v. dose of 30 mg cocaine which is known to have a half-life of 0.693 hr and a volume distribution of 2 L/kg.

- (1) What is the clearance of cocaine? Is it solely metabolized by liver? Why?
- (2) Predict AUC_{0- ∞}