Answers for Case Study 1 - Fall 2001

I. The elimination half-life $\left(\mathrm{k}_{\mathrm{e}}\right)$ can be calculated as slope using a plot of natural log of Concentration versus time:
$\mathrm{Ke}=\left(\ln \mathrm{C}_{1}-\ln \mathrm{C}_{2}\right) /\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)$
$\mathrm{Ke}=(\ln 0.5-\ln 3) /(8-1)$
$\mathrm{Ke}=0.256 \mathrm{~h}^{-1}$
Half-life $\left(\mathrm{t}_{1 / 2}\right)$ is can then be calculated by:
$\mathrm{T}_{1 / 2}=0.693 / \mathrm{Ke}$
$\mathrm{T}_{1 / 2}=0.693 / 0.256 \mathrm{~h}^{-1}$
$\mathrm{T}_{1 / 2}==2.7 \mathrm{~h}$
Volume of distribution (Vd) can be calculated by:
$\mathrm{Vd}=$ Dose $/ \mathrm{C}_{0}$
Where C_{0} is the concentration in plasma when time $=0$ or immediately after the dose is given.

To find C_{0} you need the equation for a 1-compartment, $1^{\text {st }}$ order elimination following i.v. bolus
$C=C_{0} e^{-K e t}$
or rewritten
$\ln \mathrm{C}=\ln \mathrm{C}_{0}-\mathrm{Ke}^{*} \mathrm{~T}$
rearrange to solve for C_{0}
$\ln \mathrm{C}_{0}=\ln \mathrm{C}+\mathrm{Ke}^{*} \mathrm{~T} \quad$ or $\quad \mathrm{C}_{0}=\mathrm{C} e^{K e^{*} T}$
plugging in the values using $t=1$ and $C=3 u g / \mathrm{ml}$
$C_{0}=3 e^{0.256^{*} 1}$
$\mathrm{C}_{0}=3.9 \mathrm{ug} / \mathrm{ml}$ or $3.9 \mathrm{mg} / \mathrm{L}$
Since we now have C_{0} and we know the dose
Dose $=0.5 \mathrm{mg} / \mathrm{mg}$ body weight where the patient is 60 kg
Dose $=0.5 \mathrm{mg} / \mathrm{kg}$ * $60 \mathrm{~kg}=30 \mathrm{mg}$
And the Vd is:
$\mathrm{Vd}=30 \mathrm{mg} / 3.9 \mathrm{mg} / \mathrm{L}$
And the volume of distribution is
$\mathrm{Vd}=7.7 \mathrm{~L}$
II. This problem is similar to the first problem except, the drug that we administer, aminophylline, is not the active drug BUT we measure the active drug, theophylline, in the blood AND 1 mg aminophylline $=0.8 \mathrm{mg}$ theophylline

First calculate the elimination rate constant (Ke) as we did in Problem 1:
$K e=\left(\ln C_{1}-\ln C_{2}\right) /\left(t_{2}-t_{1}\right)$
$\mathrm{Ke}=(\ln 35-\ln 14.4) /(5-0)$
$K e=0.178 h^{-1}$
Half-life $\left(\mathrm{t}_{1 / 2}\right)$ is can then be calculated by:
$\mathrm{T}_{1 / 2}=0.693 / \mathrm{Ke}$
$\mathrm{T}_{1 / 2}=0.693 / 0.178 \mathrm{~h}^{-1}$
$\mathrm{T}_{1 / 2}=3.9 \mathrm{~h}$
Volume of distribution (Vd) can be calculated by:
$\mathrm{Vd}=$ Dose $/ \mathrm{C}_{0}$
Where C_{0} is the concentration in plasma when time $=0$ or immediately after the dose is given. Now remember, the dose given was 500 mg of aminophylline BUT we need to know how much theophylline that is equivalent to, so we convert

500 mg aminophylline * 0.8 mg theophylline / 1 mg aminophylline $=400 \mathrm{mg}$
So we actually gave a 400 mg dose of theophylline. Therefore the volume of distribution is
$\mathrm{Vd}=400 \mathrm{mg} / 35 \mathrm{mg} / \mathrm{L}$
And the volume of distribution is
$\mathrm{Vd}=11.4 \mathrm{~L}$
We now want to know how long it will take the patient to reach sub-therapeutic blood levels of theophylline. Knowing therapeutic levels are 10-20 ug/ml, we would like to know how long it would take to go below $10 \mathrm{ug} / \mathrm{ml}$. Using the equation for a 1-compartment, $1^{\text {st }}$ order elimination following i.v. bolus
$\mathrm{C}=\mathrm{C}_{0} \mathrm{e}^{-\mathrm{Ket}}$
or rewritten
$\ln \mathrm{C}=\ln \mathrm{C}_{0}-\mathrm{Ke}^{*} \boldsymbol{T}$
rearrange to solve for time
$T=-\left(\ln C-\ln C_{0}\right) / K e \quad$ or $\quad T=-\left(\ln C / C_{0}\right) / K e$
Plugging in $\mathrm{C}=10 \mathrm{ug} / \mathrm{ml}, \mathrm{C}_{0}=35 \mathrm{ug} / \mathrm{ml}$, and $\mathrm{Ke}=0.178 \mathrm{~h}^{-1}$
$T=-(\ln 10 / 35) / 0.178$
$\mathrm{T}=7 \mathrm{~h}$ for the patient's blood levels to go below $10 \mathrm{ug} / \mathrm{ml}$
We now need to calculate the area under the curve (AUC) from $t=0$ to infinity $\left(\mathrm{AUC}_{0 \rightarrow \infty}\right)$ and we do this by using trapezoids.

The area of a trapezoid is the (average height of the sides) * the base or for a given time interval
$\operatorname{AUC}(t=1-2)=\left(C_{1}+C_{2}\right) / 2 *\left(t_{2}-t_{1}\right)$
Given the data set
AUC (0-1 h) $=(35+30) / 2^{*}(1-0)=32.5 u g * h / m l$
AUC $(1-2 \mathrm{~h})=(30+25) / 2$ * $(2-1)=27.5 \mathrm{ug}^{*} \mathrm{~h} / \mathrm{ml}$
AUC $(2-4 \mathrm{~h})=(17+25) / 2^{*}(4-2)=42 \mathrm{ug}^{*} \mathrm{~h} / \mathrm{ml}$
AUC (4-9 h) $=(17+2) / 2$ * $(9-4)=60$ ug*h $/ \mathrm{ml}$
AUC $(9-16 \mathrm{~h})=(2+7) / 2$ * $(16-9)=31.5 \mathrm{ug}$ * $/ \mathrm{ml}$
If we sum the AUC from $t=0$ to 16 h we get 193.5 ug *h/ml. We still need to calculate from 16 h to infinity and we do this by
$A \cup C_{(t-\infty)}=C_{x} / K e$
Where C_{x} is the last measured concentration, so in the this case the concentration at time $=16 \mathrm{~h}$
$\mathrm{AUC}_{(\mathrm{t}-\infty)}=2 \mathrm{ug} / \mathrm{ml} / 0.178 \mathrm{~h}^{-1}=11.2$
Now for AUC from $\mathrm{t}=0$ through infinity we add the two parts
AUC (0-16h) + AUC (16h-infinity) = AUC (0-infinity)
$193.5 u g^{*} \mathrm{~h} / \mathrm{ml}+11.2 \mathrm{ug}^{*} \mathrm{~h} / \mathrm{ml}=204.7 \mathrm{ug}^{*} \mathrm{~h} / \mathrm{ml}$
III. This question is similar to Part B of Question \#2. We assume a 1compartment model with $1^{\text {st }}$ order elimination. We are given a half-life of 8 h which give as an elimination rate constant of $0.087 \mathrm{~h}^{-1}$ because
$\mathrm{T}_{1 / 2}=0.693 / \mathrm{Ke} \quad$ or $\quad \mathrm{Ke}=0.693 / \mathrm{t}_{1 / 2}$
$\mathrm{Ke}=0.693 / 8 \mathrm{~h}=0.087 \mathrm{~h}^{-1}$
We want to find how long it will take for the blood concentration to fall below 20 $\mathrm{ug} / \mathrm{ml}$. We do this by using the equation
$\mathrm{C}=\mathrm{C}_{0} \mathrm{e}^{-\mathrm{Ket}}$
or rewritten
$\ln C=\ln \mathrm{C}_{0}-K \mathrm{e}^{*} T$
rearrange to solve for time
$T=-\left(\ln C-\ln C_{0}\right) / K e \quad$ or $\quad T=-\left(\ln C / C_{0}\right) / K e$
Plugging in $\mathrm{C}=20 \mathrm{ug} / \mathrm{ml}, \mathrm{C}_{0}=53 \mathrm{ug} / \mathrm{ml}$, and $\mathrm{Ke}=0.087 \mathrm{~h}^{-1}$
$T=-(\ln 20 / 53) / 0.087$
$\mathrm{T}=11.2 \mathrm{~h}$ for the patient's blood levels to go below $20 \mathrm{ug} / \mathrm{ml}$

