PHA 5127 Case Study II Fall 2002

Review of important equations:

Extraction ratio:
$$E = \frac{C_{in} - C_{out}}{C_{in}}$$
 Clearance: $Cl = Q \cdot E$ and $Cl = k_e \cdot V_d = \frac{Dose}{AUC}$

Well-stirred model:
$$E = \frac{f_u \cdot Cl_{\text{int}}}{Q_H + f_u \cdot Cl_{\text{int}}}$$
 Hepatic clearance: $Cl_H = \frac{Q_H \cdot f_u \cdot Cl_{\text{int}}}{Q_H + f_u \cdot Cl_{\text{int}}}$

Bioavailability:
$$F = 1 - E$$

High extraction
$$(f_u \cdot Cl_{\text{int}} >> Q_H)$$
: $E \approx 1$ and $Cl_H \approx Q_H$ and $F \approx \frac{Q_H}{f_u \cdot Cl_{\text{int}}}$

Low extraction
$$(f_u \cdot Cl_{\text{int}} << Q_H)$$
: $E \approx \frac{f_u \cdot Cl_{\text{int}}}{Q_H}$ and $Cl_H \approx f_u \cdot Cl_{\text{int}}$ and $F \approx 1$

Question 1:

Theophylline is known to be a low hepatic extraction drug while nicotine is a high hepatic extraction drug. Predict the changes in E, Cl_H and F under different scenarios for these two drugs.

Scenarios	Theophylline			Nicotine		
	Е	Cl_H	F	Е	Cl_H	F
Enzyme induction	↑	↑	\leftrightarrow	\leftrightarrow	\leftrightarrow	\
More binding	\	\	\leftrightarrow	\leftrightarrow	\leftrightarrow	↑
Higher hepatic blood flow	\	\leftrightarrow	\leftrightarrow	\leftrightarrow	↑	1
Higher V _d	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow

Question 2:

A 75kg male patient was given a single i.v. dose of 30 mg cocaine which is known to have a half-life of 0.693 hr and a volume distribution of 2 L/kg.

- (1) What is the clearance of cocaine? Is it solely metabolized by liver? Why?
- (2) Predict AUC_{0- ∞}

Answers:

$$k_e$$
 =0.693 / $t_{1/2}$ =1 hr -1 V_d =2*75 =150 L $Cl=k_e$ • V_d =1*150=150 L/hr>90 L.hr

There exists non-hepatic metabolism.

$$AUC_{0-\infty} = \frac{Dose}{Cl} = \frac{30}{150} = 0.2mg \cdot hr / L$$