Case study 1. (PHA5127)

Fall 2003

Question 1.

A 80 year old, 70-Kg patient with pneumonia, was being treated by an iv. bolus of gentamicin (0.5 mg/kg). Serum samples were taken at 0.5 and 6 hours post injection, and the lab reported drug concentrations of $3.41 \mu \text{g/ml}$, and $0.83 \mu \text{g/ml}$, respectively. Assume gentamicin follows one compartment, first-order elimination.

1.) Calculate the half-life of gentamicin in this patient.

$$Ke = \frac{\ln(C_2 / C_1)}{t_1 - t_2} = -\frac{\ln(0.83 / 3.41)}{0.5 - 6} = 0.26(hr^{-1})$$

$$t_{1/2} = \frac{0.693}{0.26} = 2.66(hr.)$$

2.) Calculate the volume of distribution of gentamicin in this patient.

Dose =
$$0.5 \times 70 = 35$$
 (mg)

Recall:
$$C_t = C_0 \cdot e^{-K_e t}$$
 then $C_0 = C_t \cdot e^{k_e t} = 3.41 \cdot e^{0.26 \cdot 0.5} = 3.88 (\mu g / ml)$

Then:
$$Vd = \frac{Dose}{C_0} = \frac{35}{3.88} = 9.0(l)$$

3.) Can you predict what is the drug concentration two half-lives after iv. bolus injection. $t = 2 \cdot 2.66 = 5.32(hr.)$

$$C_t = C_0 \cdot e^{-K_e t} = 3.88 \cdot e^{-0.26 \cdot 5.32} = 0.97 (\mu g / ml)$$

Or:

Recall the definition of half-life. In one half-life, $C_{t_{1/2}} = 0.5 * C_t$. Then two half-lives,

$$C_{2t_{1/2}} = 0.5 \cdot C_{t_{1/2}} = 0.5 \cdot 0.5 \cdot C_t = 0.25 \cdot 3.88 = 0.97 (\mu g / ml)$$

Question 2.

A 25-year-old, 60-kg female patient was given an iv. bolus of a aminophyllline, (200 mg). The ophylline concentration-time profiles after the first dose was given as following (table). Given the fact that 1mg of aminophylline is equivalent to 0.8mg the ophylline and elimination occurs by first-order kinetics, please answer the following questions.

Table 1. The ophylline concentration-time profiles after iv. bolus of aminophylline.

t(hr)	Con (ug/ml)	AUC(t1-t2)
0	9.64	
1	7.89	8.76
3	5.29	13.18
5	3.55	8.84
7	2.38	5.92
12	0.87	8.13
AUC 0-12		44.83

1.) Calculate the AUC_{0-12} of the phylline by using trapezoidal rule.

$$K_e = \frac{\ln(C_2/C_1)}{(t_1 - t_2)} = \frac{\ln(0.87/7.89)}{(1 - 12)} = 0.2(hr^{-1})$$

Again:
$$C_t = C_0 \cdot e^{-K_e \cdot t}$$
 Then, $C_0 = C_t \cdot e^{K_e \cdot t} = 0.87 \cdot e^{0.2 \cdot 12} = 9.64 (\mu g / ml)$

Then, using trapezoidal rule:
$$AUC_{1-2} = \frac{(C_1 + C_2)}{2} \cdot (t_2 - t_1)$$

The final answer is: 44.83 mg*h/L.

2.) Calculate the AUC0- ∞ .

$$AUC_{12-\infty} = \frac{C_t}{K_s} = \frac{0.87}{0.2} = 4.35 (mg \cdot hr / L)$$

Then,
$$AUC_{0-\infty} = AUC_{0-12} + AUC_{12-\infty} = 44.83 + 4.35 = 49.18 (mg \cdot hr / L)$$