(Key to Case Study1)

Case study 1.

(PHA5127)

Fall 2003

Question 1.

A 80 year old, $70-\mathrm{Kg}$ patient with pneumonia, was being treated by an iv. bolus of gentamicin ($0.5 \mathrm{mg} / \mathrm{kg}$). Serum samples were taken at 0.5 and 6 hours post injection, and the lab reported drug concentrations of $3.41 \mu \mathrm{~g} / \mathrm{ml}$, and $0.83 \mu \mathrm{~g} / \mathrm{ml}$, respectively. Assume gentamicin follows one compartment, first-order elimination.
1.) Calculate the half-life of gentamicin in this patient.
$K e=\frac{\ln \left(C_{2} / C_{1}\right)}{t_{1}-t_{2}}=-\frac{\ln (0.83 / 3.41)}{0.5-6}=0.26\left(h r^{-1}\right)$
$t_{1 / 2}=\frac{0.693}{0.26}=2.66(h r$.
2.) Calculate the volume of distribution of gentamicin in this patient.

Dose $=0.5 \times 70=35(\mathrm{mg})$
Recall: $C_{t}=C_{0} \cdot e^{-K_{e} t}$ then $C_{0}=C_{t} \cdot e^{k_{e} t}=3.41 \cdot e^{0.26 \cdot 0.5}=3.88(\mu \mathrm{~g} / \mathrm{ml})$
Then: $V d=\frac{\text { Dose }}{C_{0}}=\frac{35}{3.88}=9.0(l)$
3.) Can you predict what is the drug concentration two half-lives after iv. bolus injection. $t=2 \cdot 2.66=5.32(h r$.
$C_{t}=C_{0} \cdot e^{-K_{e} t}=3.88 \cdot e^{-0.26 \cdot 5.32}=0.97(\mu \mathrm{~g} / \mathrm{ml})$
Or:
Recall the definition of half-life. In one half-life, $C_{t_{1 / 2}}=0.5 * C_{t}$. Then two half-lives, $C_{2 t_{1 / 2}}=0.5 \cdot C_{t_{1 / 2}}=0.5 \cdot 0.5 \cdot C_{t}=0.25 \cdot 3.88=0.97(\mu \mathrm{~g} / \mathrm{ml})$

Question 2.

A 25 -year-old, $60-\mathrm{kg}$ female patient was given an iv. bolus of a aminophylline, (200 mg). Theophylline concentration-time profiles after the first dose was given as following (table). Given the fact that 1 mg of aminophylline is equivalent to 0.8 mg theophylline and elimination occurs by first-order kinetics, please answer the following questions.

Table1. Theophylline concentration-time profiles after iv. bolus of aminophylline.

$\mathrm{t}(\mathrm{hr})$	Con $(\mathrm{ug} / \mathrm{ml})$	$\mathrm{AUC}(\mathrm{t} 1-\mathrm{t} 2)$
0	9.64	
1	7.89	8.76
3	5.29	13.18
5	3.55	8.84
7	2.38	5.92
12	0.87	8.13
$\mathrm{AUC} \mathrm{0-12}$		44.83

1.) Calculate the AUC_{0-12} of theophylline by using trapezoidal rule.
$K_{e}=\frac{\ln \left(C_{2} / C_{1}\right)}{\left(t_{1}-t_{2}\right)}=\frac{\ln (0.87 / 7.89)}{(1-12)}=0.2\left(h r^{-1}\right)$
Again: $C_{t}=C_{0} \cdot e^{-K_{e} \cdot t}$ Then, $C_{0}=C_{t} \cdot e^{K_{e} \cdot t}=0.87 \cdot e^{0.2 \cdot 12}=9.64(\mu \mathrm{~g} / \mathrm{ml})$

Then, using trapezoidal rule: $A U C_{1-2}=\frac{\left(C_{1}+C_{2}\right)}{2} \cdot\left(t_{2}-t_{1}\right)$
The final answer is: $44.83 \mathrm{mg}^{*} \mathrm{~h} / \mathrm{L}$.
2.) Calculate the AUC0- ∞.

$$
A U C_{12-\infty}=\frac{C_{t}}{K_{e}}=\frac{0.87}{0.2}=4.35(\mathrm{mg} \cdot \mathrm{hr} / \mathrm{L})
$$

Then, $A U C_{0-\infty}=A U C_{0-12}+A U C_{12-\infty}=44.83+4.35=49.18(\mathrm{mg} \cdot \mathrm{hr} / \mathrm{L})$

