PHA 5127 - Fall 2003
Case Study \# 4 - Answers

1. In a study in patients with various degrees of renal impairment the following relationship was found for piperacillin:

The volume of distribution in the elimination phase $\left(\mathrm{Vd}_{\text {area }}\right)$ was 19 L and independent of renal function.

For a patient with normal renal function (CrCL $130 \mathrm{~mL} / \mathrm{min}$) and a patient with impaired renal function (CrCL $25 \mathrm{~mL} / \mathrm{min}$), estimate the clearance, half-life and the percentage of the dose excreted into urine.

Parameter	Normal	Impaired
$\mathrm{CL}(\mathrm{mL} / \mathrm{min})$	250	100
$\mathrm{CL}_{\text {renal }}(\mathrm{mL} / \mathrm{min})$	180	30
$\mathrm{CL}_{\text {non-renal }}(\mathrm{mL} / \mathrm{min})$	70	70
$\mathrm{t} 1 / 2(\mathrm{~h})$	0.9	2.2
$\mathrm{k}_{\mathrm{e}}\left(\mathrm{h}^{-1}\right)$	0.79	0.32
$\mathrm{~F}_{\mathrm{R}}(\%)$	72	30

For a normal patient:
The total clearance can be estimated from the graph using the creatinine clearance.
The non-renal clearance can be estimated from the graph as well. The intercept (CrCL 0 $\mathrm{mL} / \mathrm{min}$) gives the value of the non-renal clearance as creatinine is eliminated only renally.
The renal clearance can then be calculated as:

$$
C L_{\text {renal }}=C L_{\text {total }}-C L_{\text {non-renal }}
$$

The elimination rate constant can be calculated using the following equation:
$k_{e}=\frac{C L_{\text {total }}}{V d_{\text {area }}}=\frac{15 L / h}{19 L}=0.79 h^{-1}$

The half-life is then calculated as:
$t_{1 / 2}=\frac{0.693}{k_{e}}=\frac{0.693}{0.79}=0.9 h \quad$ or $\quad t_{1 / 2}=\frac{0.693 \cdot V d_{\text {area }}}{C L}=\frac{0.693 \cdot 19}{15}=0.9 \mathrm{~h}$

The fraction excreted into the urine is calculated as:
$F_{R}(\%)=\frac{C L_{\text {renal }}}{C L_{\text {total }}} \cdot 100=\frac{180}{250} \cdot 100=72$

For the impaired renal patient:

The total clearance can be estimated from the graph using the creatinine clearance.
The non-renal clearance can be estimated from the graph as well. The intercept (CrCL 0 $\mathrm{mL} / \mathrm{min}$) gives the value of the non-renal clearance as creatinine is eliminated only renally.

The renal clearance can then be calculated as:

$$
C L_{\text {renal }}=C L_{\text {total }}-C L_{\text {non-renal }}
$$

The elimination rate constant can be calculated using the following equation:
$k_{e}=\frac{C L_{\text {total }}}{V d_{\text {area }}}=\frac{6 L / h}{19 L}=0.32 h^{-1}$

The half-life is then calculated as:
$t_{1 / 2}=\frac{0.693}{k_{e}}=\frac{0.693}{0.32}=2.2 \mathrm{~h} \quad$ or $\quad t_{1 / 2}=\frac{0.693 \cdot V d_{\text {area }}}{C L}=\frac{0.693 \cdot 19}{6}=2.2 \mathrm{~h}$

The fraction excreted into the urine is calculated as:

$$
F_{R}(\%)=\frac{C L_{\text {renal }}}{C L_{\text {total }}} \cdot 100=\frac{30}{100} \cdot 100=30
$$

2. B.G., a 62 -year-old, 50 kg female is admitted to the hospital. Her serum creatinine is $3.0 \mathrm{mg} / \mathrm{dL}$ and she is about to be started on drug A. She receives an i.v. bolus of 750 mg of drug A. What will be B.G.'s plasma concentration after 3.5 h ? Also calculate B.G.'s half-life.

$$
\begin{aligned}
& C L=(0.8 \mathrm{~mL} / \mathrm{min} / \mathrm{kg} \cdot \text { weight })+C r C L(\mathrm{~mL} / \mathrm{min}) \\
& V d=3.8 \cdot \text { weight }+3.1 \cdot C r C L(m L / \mathrm{min})
\end{aligned}
$$

$$
C r C L=0.85 \cdot \frac{(140-\text { age }) \cdot \text { weight }}{72 \cdot S e C r}=0.85 \cdot \frac{(140-62) \cdot 50}{72 \cdot 3.0}=15.3 \mathrm{~mL} / \mathrm{min}
$$

$$
C L=0.8 \cdot 50+15.3=55.3 \mathrm{~mL} / \mathrm{min} \approx 3.32 L / \mathrm{h}
$$

$$
V d=3.8 \cdot 50+3.1 \cdot 15.3=237.4 L
$$

$$
k_{e}=\frac{C L}{V d}=\frac{3.32}{237.4}=0.012 h^{-1} \quad t_{1 / 2}=\frac{0.693}{k_{e}}=\frac{0.693}{0.012}=57.8 h
$$

$$
C_{p}=\frac{D o s e}{V d} \cdot e^{-k_{e} \cdot t}=\frac{750}{237.4} \cdot e^{-0.012 \cdot 3.5}=3.03 \mathrm{mg} / L
$$

