PHA 5127

First Exam

Fall 2006

On my honor, I have neither given nor received unauthorized aid in doing this assignment.

Name

Put all answers on the bubble sheet

TOTAL ____/125 pts

Question Set I (True or False)

(15 points)

True (A) or False (B). On the bubble sheet mark A for true or B for false

A drug that does not bind to plasma proteins and tissue components has a Vd of 41 L

- 1.) T \underline{F} The drug is likely to be hydrophilic
- 2.) T \underline{F} V_T is likely to be round 18 L
- 3.) T \underline{F} The relatively small Vd of 41 L suggests that the hepatic clearance has to be pronounced.
- 4.) \underline{T} F At equilibrium, the free drug concentrations in plasma and tissue will be identical.
- 5.) $\underline{T} \underline{F}$ At equilibrium, the total blood concentrations in plasma and tissue will be identical.

Question Set II (10 points)

Imagine a drug that is given as an intravenous bolus. The dose was 80 mg. The elimination follows first order principles. 2 hours after administration the drug a concentration C1 of 1.48 μ g/ml is observed. Four hours after the administration the concentration C2 was 0.74 μ g/ml

6.) What is the elimination rate constant of this drug? (10 points)

<u>A) 0.346 h-1</u> B) 0.693 h C) 0.693 h⁻¹ D) 0.346 μg/(ml*h) E) 0.370 h⁻¹

7.) What will the concentration be 8 hours after injection? (10 points)

A) 0.370 μg/ml
B) 0.370 mg/ml
C) 0 μg/ml
D) 0.185 μg/ml
E) none of the above

Question Set II (continued)

Imagine a drug that is given as an intravenous bolus. The dose was 80 mg. The elimination follows first order principles. 2 hours after administration the drug a concentration C1 of 1.48 μ g/ml is observed. Four hours after the administration the concentration C2 was 0.74 μ g/ml

8.) What is the concentration best describing the concentration directly after injection of the drug. (10 points)

- A) $2 \mu g/ml$
- B) <u>3 μg/ml</u>
- C) $4 \mu g/ml$
- D) 5 μ g/ml
- E) none of the above
- 9.) What is the half-life of this drug? (10 points)
 - A) 1.0 h
 - B) 1.3 h
 - C) 3.0 h
 - D) 4.0 h
 - E) none of the above

Question Set III

10.) A patient with renal dysfunction received a dose of vancomycin (first order elimination). Plasma concentrations were 22 and 15 mg/L at 24 and 48 hours after drug administration. Plot these two plasma concentrations on semilog paper and determine how many hours after drug administration the concentration would reach 10 mg/L (10 points)

- A. 2 days
- B. <u>3 days</u>
- C. 4 days
- D. 5 days
- E. None of the above

- 11.) Calculate the area under the concentration time profile observed in the last question during day 2. (11 points)
 - A. 220 mg*hours/Liters
 - B. 330 mg*hours/Liters

C. 440 mg*hours/Liters

- D. 670 mg*hours/Liters
- E. None of the above.

Question Set IV(points)

Mark the correct statements? (16 points)

True (A) or False (B). On the bubble sheet mark A for true or B for false

12.) T	<u>F</u>	The volume of distribution relates the amount of drug in the body to the amount of drug in the plasma
13. <u>) <i>T</i></u>	F	The volume of distribution relates the amount of drug in the body to the concentration of drug in the plasma
14.) T	F	The volume of distribution relates the concentration of drug in the body to the concentration of drug in the plasma
15.) T	<u>F</u>	The larger the volume of distribution, the smaller the dose necessary to achieve a certain starting concentration.

Question Set V (Matching)

(16 points)

For the physiological changes listed below, select the induced changes on the pharmacokinetic parameters for a lipophilic, acid (pka), protein bound drug

Select the effect on kinetics

A) $V_D \uparrow$ B) $V_D \checkmark$ C) decreased rate of uptake into liver tissue D) increased rate of uptake into liver tissue E) none of the above

Physiological change

- 16.) Decrease in pH of the blood $\underline{A,D,E}$
- 17.) Increase in tissue binding \underline{A}
- 18.) Decrease in liver blood flow <u>C,E</u>
- 19.) Decreased blood flow through poorly perfused tissues (e.g. fat tissue) <u>*E*</u>

Question Set VI (Select the most correct combination)

- 20.) What of the following drug properties is beneficial for efficient distribution into poorly perfused organs (8 points)
 - a) The neutral (uncharged) species of a weak acid that is highly lipophilic.
 - b) The drug is uncharged at all times and highly hydrophilic
 - c) A strong base whose uncharged form is lipophilic
 - d) An uncharged drug with a small octanol/water partition coefficient
 - e) An acid with a pk_a of 7.4 and a large partition coefficient.

A) a, c, d

B) c, d, e

C) a,c,e

<u>D) a, e</u>

E) none of the above

Question Set VII (True or False)

(9 points)

True (A) or False (B). On the bubble sheet mark A for true or B for false

Mark whether the following statements are true (A) or false (B) for a drug that is distributed through permeability limited processes.

- 21.) \underline{T} F Lipophilic unionized drugs are likely to enter tissues relatively fast.
- 22.) T \underline{F} The uptake of a hydrophilic drug into tissue can be increased significantly by increasing the blood flow through the tissue
- 23.) <u>*T*</u> *F* Tissues with low blood flow should take up lipophilic unionized drugs the best.

Useful Pharmacokinetic Equations

Symbols

D = dose= dosing interval CL = clearanceVd = volume of distribution $k_e = elimination rate constant$ $k_a = absorption rate constant$ F = fraction absorbed (bioavailability) $K_0 = infusion rate$ T = duration of infusionC = plasma concentration

General

Elimination rate constant

$$k_{e} = \frac{CL}{Vd} = \frac{ln\left(\frac{C_{1}}{C_{2}}\right)}{(t_{2} - t_{1})} = \frac{lnC_{1} - lnC_{2}}{(t_{2} - t_{1})}$$

Half-life

$$t_{1/2} = \frac{0.693 \cdot Vd}{CL} = \frac{\ln(2)}{k_e} = \frac{0.693}{k_e}$$

Intravenous bolus

Initial concentration

$$C_0 = \frac{D}{Vd}$$

Plasma concentration (single dose) $C = C_0 \cdot e^{-k_e \cdot t}$

Plasma concentration (multiple dose)

$$C = \frac{C_0 \cdot e^{-k_e \cdot t}}{\left(1 - e^{-k_e \cdot \tau}\right)}$$

Peak (multiple dose)

$$C_{\max} = \frac{C_0}{\left(1 - e^{-k_e \cdot \tau}\right)}$$

Trough (multiple dose)

$$C_{\min} = \frac{C_0 \cdot e^{-k_e \cdot \tau}}{\left(1 - e^{-k_e \cdot \tau}\right)}$$

Average concentration (steady state)

$$\overline{C}p_{ss} = \frac{D}{CL \cdot \tau}$$

Oral administration

Plasma concentration (single dose)

$$C = \frac{F \cdot D \cdot k_{a}}{Vd(k_{a} - k_{e})} \cdot \left(e^{-k_{e} \cdot t} - e^{-k_{a} \cdot t}\right)$$

Time of maximum concentration (single dose)

$$t_{max} = \frac{ln\left(\frac{k_a}{k_e}\right)}{\left(k_a - k_e\right)}$$

Plasma concentration (multiple dose)

$$C = \frac{F \cdot D \cdot k_{a}}{Vd(k_{a} - k_{e})} \cdot \left(\frac{e^{-k_{e} \cdot t}}{\left(1 - e^{-k_{e} \cdot \tau}\right)} - \frac{e^{-k_{a} \cdot t}}{\left(1 - e^{-k_{a} \cdot \tau}\right)}\right)$$

Time of maximum concentration (multiple dose)

$$t_{max} = \frac{\ln\left(\frac{k_a \cdot (1 - e^{-k_e \cdot \tau})}{k_e \cdot (1 - e^{-k_a \cdot \tau})}\right)}{(k_a - k_e)}$$

Average concentration (steady state)

$$\overline{\mathbf{C}} = \frac{\mathbf{F} \cdot \mathbf{D}}{\mathbf{C} \mathbf{L} \cdot \boldsymbol{\tau}}$$

$$Cl = \frac{Dose \cdot F}{AUC}$$
$$Cl = k_e \cdot V_d$$

Constant rate infusion

Plasma concentration (during infusion)

$$C = \frac{k_0}{CL} \cdot \left(1 - e^{-k_e \cdot t}\right)$$

Plasma concentration (steady state)

$$C = \frac{k_0}{CL}$$

Calculated clearance (Chiou equation)

$$CL = \frac{2 \cdot k_0}{(C_1 + C_2)} + \frac{2 \cdot Vd \cdot (C_1 - C_2)}{(C_1 + C_2) \cdot (t_2 - t_1)}$$

Short-term infusion

Peak (single dose)

 $C_{\max(1)} = \frac{D}{CL \cdot T} \cdot \left(1 - e^{-k_e \cdot T}\right)$

Trough (single dose)

 $\mathbf{C}_{\min(1)} = \mathbf{C}_{\max(1)} \cdot \mathbf{e}^{-\mathbf{k}_{e} \cdot (\tau - T)}$

Peak (multiple dose)

$$C_{max} = \frac{D}{CL \cdot T} \cdot \frac{\left(1 - e^{-k_{e} \cdot T}\right)}{\left(1 - e^{-k_{e} \cdot \tau}\right)}$$

Trough (multiple dose)

 $C_{\min} = C_{\max} \cdot e^{-k_e \cdot (\tau - T)}$

Calculated elimination rate constant

$$k_{e} = \frac{ln \left(\frac{C_{max}^{*}}{C_{min}^{*}}\right)}{\Delta t}$$

with C_{max}^{*} = measured peak and C_{min}^{*} = measured trough,

measured over the time interval Δt

Calculated peak

$$C_{\max} = \frac{C_{\max}^*}{e_{\cdot}^{-k_e \cdot t^*}}$$

with C_{max}^{*} = measured peak, measured at time t^{*} after the end of the infusion

Calculated trough

$$\mathbf{C}_{\min} = \mathbf{C}_{\min}^* \cdot \mathbf{e}^{-\mathbf{k}_e \cdot \mathbf{t}}$$

with C_{min}^{*} = measured trough, measured at time t^{*} before the start of the next infusion

Calculated volume of distribution

$$Vd = \frac{D}{k_e \cdot T} \cdot \frac{\left(1 - e^{-k_e \cdot T}\right)}{C_{max} - C_{min} \cdot e^{-k_e \cdot T}}$$

Calculated recommended dosing interval

$$\tau = \frac{ln \left(\frac{C_{max(desired)}}{C_{min(desired)}}\right)}{k_{e}} + T$$

Calculated recommended dose

$$\mathbf{D} = \mathbf{C}_{max(desired)} \cdot \mathbf{k}_{e} \cdot \mathbf{V} \cdot \mathbf{T} \cdot \frac{\left(1 - e^{-k_{e} \cdot \tau}\right)}{\left(1 - e^{-k_{e} \cdot T}\right)}$$

Two-Compartment-Body Model

$$\mathbf{C} = \mathbf{a} \bullet \mathbf{e}^{-\alpha \mathbf{t}} + \mathbf{b} \bullet \mathbf{e}^{-\beta \mathbf{t}}$$

$$AUC_{\infty} = a / \alpha + b / \beta$$

 $Vd_{area} > Vd_{ss} > Vc$

Creatinine Clearance

$$CL_{creat}(male) = \frac{(140 - age) \bullet weight}{72 \bullet Cp_{creat}}$$

 CL_{creat} (female) = $\frac{(140 - age) \bullet weight}{85 \bullet Cp_{creat}}$

With weight in kg, age in years, creatinine plasma conc. in mg/dl and CL_{creat} in ml/min

Ke for aminoglycosides

 $K_e = 0.00293(CrCL) + 0.014$

Metabolic and Renal Clearance

 $\mathbf{E}_{\mathbf{H}} = \frac{CI_{\mathsf{int}} \cdot fu_{\mathsf{b}}}{Q_{\mathsf{H}} + CI_{\mathsf{int}} \cdot fu_{\mathsf{b}}}$

$$Cl_{H} = E_{H} \cdot Q_{H} = \frac{Q_{H} \cdot CI_{int} \cdot fu_{b}}{Q_{H} + CI_{int} \cdot fu_{b}}$$

$$F_{\rm H} = \frac{Q_{\rm H}}{Q_{\rm H} + Cl_{\rm int} \cdot fu_{\rm b}}$$

$$Cl_{ren} = RBF \cdot E = GFR \cdot \frac{C_{in} - C_{out}}{C_{in}}$$

$$Cl_{ren} = \frac{\text{rate of excretion}}{\text{plasma concentration}}$$
$$Cl_{ren} = fu \cdot GFR + \left[\frac{\text{Rate of secretion - Rate of reabsorption}}{\text{Plasma concentration}}\right]$$

$$Cl_{ren} = \frac{Urine flow \cdot urine concentration}{Plasma concentration}$$

Ideal Body Weight

Male

IBW = 50 kg + 2.3 kg for each inch over 5ft in

height

Female

IBW = 45.5 kg + 2.3 kg for each inch over 5ft in height

Obese

ABW = IBW + 0.4*(TBW-IBW)

Volume of Distribution

$$V = V_{\rm P} + V_{\rm T} \cdot K_{\rm P}$$
$$V = V_{\rm P} + V_{\rm T} \cdot \frac{fu}{fu_{\rm T}}$$

Clearance

$$Cl = \frac{Dose}{AUC}$$

 $Cl = k_e \cdot V_d$

N	am	e	•
IN	alli	υ	

UFID #:_____

_

For One Compartment Body Model

	For a single I.V. bolus administration:	For multiple I.V. bolus administration:		
	$C_0 = \frac{D}{V}$	$Cn(t) = \frac{D}{V} \cdot \frac{\left(1 - e^{-nk_e\tau}\right)}{\left(1 - e^{-k_e\tau}\right)} \cdot e^{-k_et}$		
If the dosing involves the use of I.V. bolus	$C = C_0 \cdot e^{-k_e t}$	at peak: $t = 0$; at steady state $n \rightarrow \infty$		
administration:		at trough: $t = \tau$		
		$C_{\max ss} = \frac{D}{V} \cdot \frac{1}{(1 - e^{-k_e \tau})}$		
		$C_{\min ss} = C_{\max ss} \cdot e^{-k_e \tau}$		
	For a single short-term I.V. infusion:	For multiple short-term I.V. infusion at steady state:		
If the desing involves the	Since $\tau = t$ for C_{max}	$C_{\max} = \frac{D}{Vk_eT} \cdot \frac{\left(1 - e^{-k_eT}\right)}{\left(1 - e^{-k_eT}\right)}$		
If the dosing involves the use of I.V. infusion:	$C_{\max} = \frac{D}{Vk T} \cdot \left(1 - e^{-k_e T}\right)$			
	$VK_e I$ $C_{\min} = C_{\max} \cdot e^{-k_e(\tau - T)}$	$C_{\min} = C_{\max} \cdot e^{-k_e(\tau - T)}$		
	1			
	$C_t = \frac{D}{Vk_eT} \cdot \left(e^{k_eT} - 1\right) \cdot e^{-k_et} \text{(most general eq.)} \qquad \text{during infusion } t = T \text{ so,}$			
If the dosing involves a I.V. infusion (more equations):	$C_t = \frac{D}{Vk_eT} \cdot \left(1 - e^{-k_e t}\right) \text{ (during infusion)}$	at steady state $t \to \infty$, $e^{-k_e t}$, $t \to 0$ so,		
cquurons).	$Cpss = \frac{D}{Vk_eT} = \frac{k_0}{Vk_e} = \frac{k_0}{CL}$ (steady state)	remembering $k_0 = \frac{D}{T}$ and $CL = V \cdot k_e$		
	For a single oral dose:	For multiple oral doses:		
If the dosing involves	$C = \frac{F \cdot D \cdot k_a}{V(k_a - k_e)} \cdot \left(e^{-k_e t} - e^{-k_a t}\right)$	$C = \frac{F \cdot D \cdot k_a}{V(k_a - k_e)} \cdot \left\lfloor \frac{e^{-k_e t}}{(1 - e^{-k_e \tau})} - \frac{e^{-k_a t}}{(1 - e^{-k_a \tau})} \right\rfloor$		
oral administration:	$t_{\max} = \ln \left[\frac{k_a}{k_e} \right] \cdot \frac{1}{\left(k_a - k_e \right)}$	$t_{\max} = \ln \left[\frac{k_a \cdot \left(1 - e^{-k_e \tau} \right)}{k_e \cdot \left(1 - e^{-k_a \tau} \right)} \right] \cdot \frac{1}{\left(k_a - k_e \right)}$		