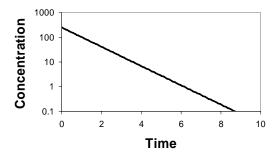
## Case Study 1 PHA 5127 – Fall 2006

**Question 1.** A 3 year old, 15 kg patient was brought in for surgery and was given a 100 mcg/kg iv bolus injection of a muscle relaxant. The plasma concentrations were measured post injection and noted in the table below:

| Time (h) | Plasma Conc. |  |
|----------|--------------|--|
|          | (mcg/L)      |  |
| 0.5      | 100          |  |
| 1        | 85           |  |
| 3        | 57           |  |
| 5        | 37           |  |
| 7        | 22           |  |

Determine the following pharmacokinetic parameters of the drug for this patient:

- a) The elimination rate constant (k<sub>e</sub>).
- b) The half life  $(t_{1/2})$ .
- c) The initial plasma drug concentration (C<sub>o</sub>).
- d) The volume of distribution  $(V_d)$ .
- e) The area under the curve  $(AUC_{0})$  using the trapezoidal rule.
- f) At 2 hours after injection, what is the plasma drug concentration?


*Question 2.* Following are the physicochemical properties of three drugs:

| Property                   | Drug A    | Drug B | Drug C  |
|----------------------------|-----------|--------|---------|
| Molecular Weight           | 315       | 378    | 90,000  |
| pKa                        | Neutral   | Base   | -       |
| Polarity of unionized form | Non-polar | Polar  | Protein |

The muscle would most likely take up which of the above mentioned drugs? Why? What type of distribution (perfusion or permeability) limits the other drugs?

**Question 3.** Which of the following statements best describes a zero-order or first-order process:

- a) The same fraction of drug is eliminated during a given time interval.
- b) The same amount of drug is eliminated during a given time interval.
- c) The time vs. plasma drug concentration profile is as follows:

