1 A . What happens to the bioavailability of a high extraction drug when the following parameters are increased: $\mathrm{F}_{\mathrm{u}}, \mathrm{Q}_{\mathrm{H}}, \mathrm{Cl}_{\text {int }}$

As ${ }_{\mathrm{Fu}}$ and $\mathrm{Cl}_{\text {int }}$ increase the bioavailability decreases. As Q_{H} increases the bioavailability increases. $\mathrm{F}=\mathrm{Q}_{\mathrm{H}} /\left(\mathrm{F}_{\mathrm{u}}{ }^{*} \mathrm{Cl}_{\text {int }}\right)$
B. Explain why changes in the above parameters do not change the bioavailability of a low extraction drug?

With a low extraction drug we know that a large amount of drug gets into the body and avoids first pass metabolism, meaning the extraction ratio is very small. This means that the bioavailability is about $1(\mathrm{~F}=1-\mathrm{E}, \mathrm{F} \sim 1)$. By changing the small extraction ratio there is not much effect on bioavailability. Changing F from 99% from 98% is insignificant.
2. A patient with liver failure was given 70 mg of a drug as an IV bolus injection. The plasma concentrations at 3 hours and 8 hours after injection were $1.31 \mathrm{mg} / \mathrm{L}$ and $0.65 \mathrm{mg} / \mathrm{L}$ respectively. The drug is eliminated by hepatic metabolism and renal excretion via glomerula filtration. The plasma protein binding for the drug is $60 \% \ldots$ What are the hepatic clearance and the volume of distribution of this drug in this patient? (Use $130 \mathrm{ml} / \mathrm{min}$ for glomerula filtration rate).
$\mathrm{k}_{\mathrm{e}}=-\ln (0.65 / 1.31) /(8-3)=0.14 / \mathrm{hr}$
$\mathrm{C}_{0}=1.31 * \exp (0.14 * 3)=1.99 \mathrm{mg} / \mathrm{L}$
$\mathrm{V}_{\mathrm{d}}=$ Dose $/ \mathrm{C}_{0}=70 / 1.99=35.2 \mathrm{~L}$
$\mathrm{Cl}=\mathrm{k}_{\mathrm{e}} * \mathrm{~V}_{\mathrm{d}}=0.14 * 35.2=4.93 \mathrm{~L} / \mathrm{hr}$
$\mathrm{Cl}_{\text {ren }}=\mathrm{GFR} * \mathrm{f}_{\mathrm{u}}=130 * 60 * 0.4 / 1000=3.12 \mathrm{~L} / \mathrm{hr}$
$\mathrm{Cl}_{\text {hep }}=4.93-3.12=1.81 \mathrm{~L} / \mathrm{hr}$

3. Mark True or False

T F highly ionized substances tend to remain in the urine
T F tubular reabsorption can only be an active transport process
T F fluid is filtered across the glomerulus through passive diffusion
4. For the following situations, indicate whether the drug is filtered, reabsorbed or actively secreted:Assume GFR is $130 \mathrm{~mL} \mathrm{~min}^{-1}$, urine flow is $1.5 \mathrm{ml} \mathrm{min}^{-1}$

A drug with $f_{u}=0.1$ and a $\mathrm{Cl}_{\text {REN }}=20 \mathrm{~mL} \mathrm{~min}^{-1}$ is Actively secreted

A drug with $\mathrm{f}_{\mathrm{u}}=0.40$ and a $\mathrm{Cl}_{\text {REN }}=52 \mathrm{~mL} \mathrm{~min}^{-1}$ is Filtered
A drug with $\mathrm{f}_{\mathrm{u}}=0.30$ and a $\mathrm{Cl}_{\text {REN }}=0.45 \mathrm{~mL} \mathrm{~min}^{-1}$ is Fully reabsorbed

