PHA 5127 Answers Case Study 2 Fall 2007

1. Patient A.M. is given a 60 mg dose of gentamicin. The volume of distribution for this patient is 10 L and the concentration after 8 hours is 1.4 mg/L. Calculate the k_e . What is the half-life?

Answer: $C_o=Dose/(Volume of distribution)=60mg/10L=6mg/L$ $C=C_o*e^{-kc*t}$ (lnC-lnC_o)=-k_e*t \rightarrow -(lnC-lnC_o)/t=k_e \rightarrow k_e=-(ln1.4mg/L-ln6mg/L)/8 hours \rightarrow k_e=0.182 hours⁻¹

 $t_{1/2}=0.693/k_e \rightarrow t_{1/2}=0.693/0.182 \text{ hours}^{-1}=3.81 \text{ hours}$

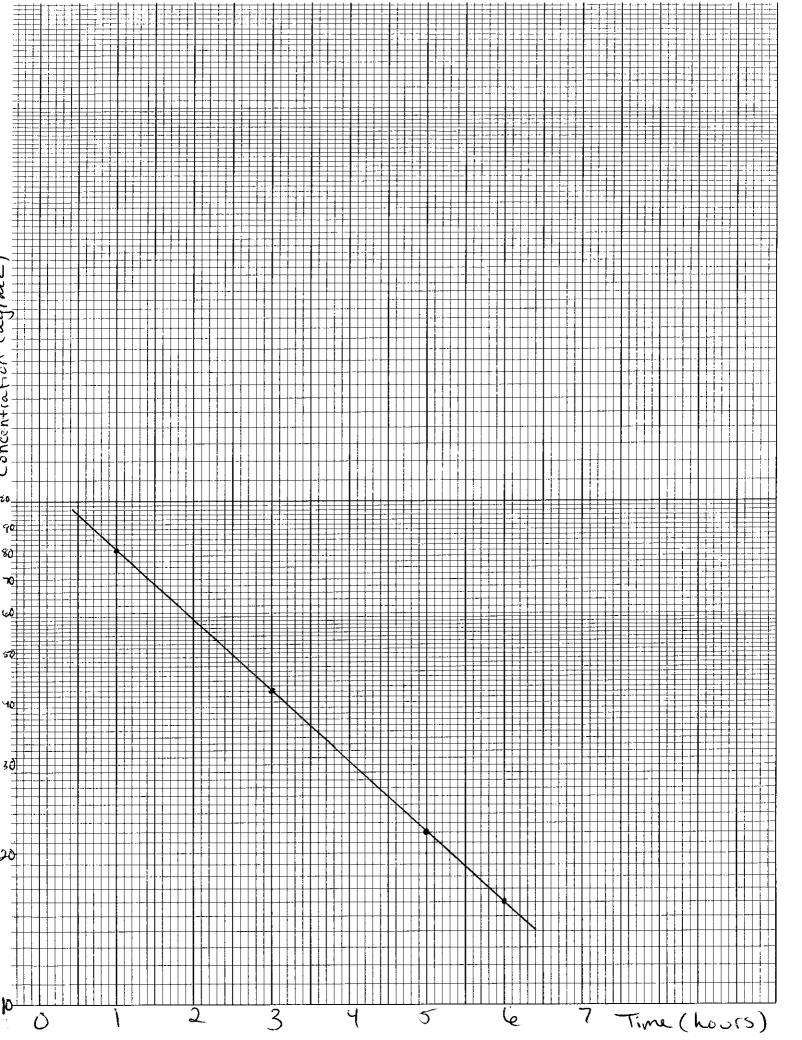
2. Assuming a one compartment body model and a 1st order process, please graph the following on semilog paper and predict the concentration after 6 hours.

Time (hours)	Concentration (mg/L)
1	80
3	42
5	22

Answer=~16 mg/L

3. Using 110 mg/L as the starting concentration and a k_e of 0.318 hour⁻¹ calculate the concentration after 6 hours.

Answer: $C=C_0 * e^{-ke^{t}} C=110 \text{ mg/L} * e^{(-0.318 \text{ hour}^{-1}*6 \text{ hour})}=16.3 \text{ mg/L}$


4. True of False

a. In a one-compartment body model it is assumed that a drug distributes to all areas of the body instantaneously. True.

b. Pharmacodynamics is the study of the time course of a drug's absorption, distribution, metabolism, and elimination. False.

Pharmacodynamics refers to the relationship between concentration at the site of action and the resulting effect. c. The k_e of a drug is 0.00333 min⁻¹. After 2 hours 67% of the drug is remaining in the body. True.

Answer: e^{-ke^*t} =fraction remaining $e^{(-0.00333 \text{ min-1*60 min/hour*2 hours})}=0.67$

