


## PHA 5127 Dose Optimization I

# Case Study I

**1.** Determine whether the elimination process in the graphs a-d is zero-order or first order. (Cp: Drug concentration in plasma)







2. 200 mg Drug A was administered to a female patient (60 kg) through IV bolus injection. The following plasma concentrations (Cp) were observed.

| time (h) | Cp (µg/mL) |
|----------|------------|
| 1        | 1.260      |
| 4        | 0.315      |
| 8        | 0.050      |
| 12       | 0.008      |

- a) Plot Cp vs. time and determine the order of the elimination process
- b) Determine  $k_e$  and  $t_{1/2}$  (half life)
- c) Estimate the initial concentration  $C_0$  and the volume of distribution (Vd)
- d) Calculate  $AUC_{0-t(last)}$  and  $AUC_{0-\infty}$
- e) Calculate  $\frac{AUC_{0-t(last)}}{AUC_{0-\infty}} * 100\%$
- f) Predict the plasma concentration after 6 hours

#### 3. Define LADME and pharmacokinetics

#### 4. TRUE (T) or FALSE (F)

The plasma concentration time profile of a certain drug is dependent on the dosage form

### T F

For a zero-order elimination process the half-life is dependent on the plasma concentration at time point 0  $(C_0)$ 

#### T F

For a first-order elimination process the half-life is dependent on the plasma concentration at time point 0 ( $C_0$ )

#### T F

Drugs with a high volume of distribution (Vd) have a narrow therapeutic window

### T F

In the case of perfusion limited distribution, the blood flow determines the rate of uptake

#### T F

In the case of permeability limited distribution, the blood flow is not important for the rate of uptake

#### T F