PHA 5127 Dose Optimization I

Case Study V

1. List the assumptions that apply to a one-compartment-body model (IV-bolus administration)

•

•

•

2. Indicate with an arrow, (-), or (?) for how a change in the given parameter would affect the other parameters.

CL	VD	Dose	AUC	k _e
\uparrow				
	\rightarrow			
		\uparrow		
			↑	
				1

3. TRUE (T) or FALSE (F)

The clearance of a drug relates the dose with AUC_{0-tlast} (assume IV-bolus administration)

T F

4. Patient A receives 100 mg of drug A. Patient B 200 mg of drug B. Evaluate the following statements. (Assume IV-bolus administration).

The AUC_{∞} of patient A must be as double as high as the AUC_{∞} of patient B

T F

Both patients must show the same free concentrations at time point zero if the volume of distribution of drug B is as double as high the volume of distribution of A

 \mathbf{T}

If patient B received 400 mg of drug B instead of 200 mg, his AUC_{∞} is likely to be twice as high.

 \mathbf{T} \mathbf{F}

5. On slide 227, there is the following equation:

$$CL_{total} = CL_{ren} + CL_{bil} + CL_{met}$$

Could you think of a situation for which this equation would not be correct?