Name: \qquad
UFID\#: \qquad

PHA 5127

First Exam Fall 2009

On my honor, I have neither given nor received unauthorized aid in doing this assignment.
Name
Question Set/Points
I. $\quad 30 \mathrm{pts}$
II. 20 pts
III. 15 pts
IV $\quad 15 \mathrm{pts}$
V. 25 pts
VI. $\quad 10$ pts
VII. 10 pts
VIII. 10 pts
IX. $\quad 35$ pts
TOTAL: 170 pts

Name: \qquad
UFID\#: \qquad

Question Set I (True or False)

(30 points)
True (A) or False (B). On the bubble sheet mark A for true or B for false. Assume passive diffusion as the driving force for distribution.
1: $\mathrm{T} \quad \mathrm{F}$ The larger the volume of distribution, the lower the plasma concentration.

2: $\quad \mathrm{T} \quad \mathrm{F}$ The volume of distribution can not be larger than the actual volume of the patient taking the medicine.

3: $\quad \mathrm{T} \quad \mathrm{F}$ For a drug that binds to a high affinity-low capacity binding protein in plasma, the f_{u} and the volume of distribution might depend on the dose of the drug.

4: \quad T \quad A drug with a large volume of distribution is likely to have a narrow therapeutic window.

5: \quad T F It is likely that drugs in liver disease patients might show a reduced volume of distribution.

6: \quad T \quad F A volume of distribution of 20 L for a lipophilic drug, suggest that the drug's plasma protein binding is more pronounced than the tissue binding.

Name: \qquad
UFID\#: \qquad
Question Set II (20 points) True (A) or False (B). On the bubble sheet mark A for true or B for false.

True (A) or False (B). On the bubble sheet mark A for true or B for false. Consider a lipophilic acidic drug $(p k a=1, \log P=5)$ and a lipophilic neutral drug $B(\log P=5)$. Both do not show any affinity to transporters and show similar tissue and plasma protein binding.

7: \quad T \quad Drug B will enter the brain faster.

8: $\quad \mathrm{T} \quad \mathrm{F}$ Drug A will be unable to enter the interstitial fluid.

9: $\quad \mathrm{T} \quad \mathrm{F}$ Drug B be is likely to have a larger volume of distribution.

10: T F When the same dose of Drug A and B is given as an iv bolus injection, Drug A's C_{0} will be higher than Drug's B C_{0}.

Name: \qquad
UFID\#: \qquad

Question Set III

(15 points)

Listed in the Table are two properties of acidic drug molecules:

- the fraction ionized and
- the partition coefficient of the unionized form.

	Fraction unionized at pH	Partition coefficient
Drug A	7.4	
Drug B	0.5	2
Drug C	0.2	0.001
Drug D	0	0.0001
	1	3

Select the drug(s) (A, B, C, or D) that fits best (selection of 1-4 drugs is possible)

11: Drug will cross well built membranes the fastest.

12: Drug \qquad will cross well built membranes the slowest.

13: In areas of the body were membranes are extremely thin and larger aqueous pores exist, even drug. \qquad will be taken up at a relative good rate.

Name: \qquad
UFID\#: \qquad

Question Set IV (True or False)

(15 points)
True (A) or False (B). On the bubble sheet mark A for true or B for false. Assume no active transport.

14: T F Compared to fat, the liver is likely to have a higher rate of uptake for small lipophilic drugs due to its higher blood flow rate.

15: \quad T \quad The rate with which hydrophilic compounds will move across well-built membranes will depend on the concentration gradient between total drug in plasma and total drug in tissue.

16: T F Permeability limited distribution is generally seen for small, lipophilic drugs
\qquad
UFID\#: \qquad

Question Set V (True or False)

(25 points)

Drug A

Drug B

True (A) or False (B). On the bubble sheet mark A for true or B for false

17: T F Drug B's rate of elimination is affected by the amount of drug in the body.

18: T F Drug B's elimination rate constant has the unit "ng/ml".

19: T F For Drug A, the fraction of drug eliminated per hour is constant.

20: T F Drug B's concentration-time profile might be explained by saturated metabolic enzymes.

21: T F Drug A's elimination rate constant has the units "ng/ml".

Name: \qquad
UFID\#: \qquad

Question Set VI

(10 points)
Imagine a drug that is given as an intravenous bolus. The dose was 80 mg . The elimination follows first order principles. three hours after administration the drug concentration C 1 of 1.48 $\mu \mathrm{g} / \mathrm{ml}$ is observed. Four hours after the administration the concentration C2 was $0.37 \mu \mathrm{~g} / \mathrm{ml}$

22: What is the elimination rate constant of this drug?
A) $0.346 \mathrm{~h}^{-1}$
B) 1.386 h
C) $1.386 \mathrm{~h}^{-1}$
D) $0.555 \mu \mathrm{~g} /\left(\mathrm{ml}{ }^{*} \mathrm{~h}\right)$
E) $0.370 \mathrm{~h}^{-1}$

23: What will the concentration be 4.5 hours after injection?
A) $0.185 \mu \mathrm{~g} / \mathrm{ml}$
B) $0.370 \mathrm{mg} / \mathrm{ml}$
C) $0 \mu \mathrm{~g} / \mathrm{ml}$
D) $0.185 \mu \mathrm{~g} / \mathrm{ml}$
E) none of the above

Name: \qquad
UFID\#: \qquad

Question Set VII

(10 points)
24: A $\mathbf{2 0 0} \mathbf{~ m g}$ dose of a drug was administered to patient $\mathbf{1}$ and patient $\mathbf{2}$ by IV bolus injection. For patients 1 and 2, the initial concentrations were $1.25 \mathrm{mg} / \mathrm{L}$ and $2.5 \mathrm{mg} / \mathrm{L}$, respectively. This drug follows a one-compartment body model, crosses membranes easily, distributes well into all tissues, and is around 50% bound to plasma proteins. Why is the initial plasma concentration different for these two patients?

Select the INCORRECT ANSWER
A) Patient 1 has more fat tissue than Patient 2.
B) Fraction unbound in plasma in Patient 1 is higher than that in Patient 2.
C) Tissue unbound fraction in Patient 1 is higher than that in Patient 2.
D) Patient 1 has a smaller volume of distribution than Patient 1.

Name: \qquad
UFID\#: \qquad

Question Set VIII

(10 points)
If we know that the plasma drug concentration 4 hours after a gentamycin dose was given is $4.2 \mathrm{mg} / \mathrm{L}$ and the half live is 3 hours, what was the concentration after 1 hours. Assume that the result will be between 1.0 and $9.9 . \mathrm{mg} / \mathrm{L}$.

25: Mark A, B, C, or D, if the number before the decimal point is 1 (A), 2(B), 3(C), 4(D), 5(E). Leave blank if this is not the case.

26: Mark A, B, C, or D, if the number before the decimal point is 6 (A), 7(B), 8(C), 9(D), Leave blank if this is not the case.

27; Mark A, B, C, or D, if the number after the decimal point is 1 (A), 2(B), 3(C), 4(D), 5(E). Leave blank if this is not the case.

28: Mark A, B, C, or D, if the number after the decimal point is 6 (A), 7(B), 8(C), 9(D), $\mathbf{0}$ (E) Leave blank if this is not the case.

Name: \qquad
UFID\#: \qquad

Question Set IX

(35 points)

29: T F Free drug concentrations are always the same in plasma and tissues.

30: T F The slower the absorption from the muscle into the blood, the lower the maximum drug concentration observed in the plasma.

31: T F The slower the absorption of a drug from the muscle into the blood, the lower the plasma drug concentration at later time points.

32: T F A slow absorption might allow less frequent dosing.

33: T F A slower absorption might be advantageous for a drug with a narrow therapeutic window.

34: T F Plasma is obtained from blood by letting it clot.

35: T F Concentrations in plasma are of relevance for the drug therapy as they are generally identical to concentrations at the target site

Name: \qquad
UFID\#: \qquad

Useful Pharmacokinetic Equations

Symbols

D = dose
$\tau=$ dosing interval
CL = clearance
$\mathrm{Vd}=$ volume of distribution
$\mathrm{k}_{\mathrm{e}}=$ elimination rate constant
$\mathrm{k}_{\mathrm{a}}=$ absorption rate constant
F = fraction absorbed (bioavailability)
$K_{0}=$ infusion rate
$\mathrm{T}=$ duration of infusion
$C=$ plasma concentration

General

Elimination rate constant

$$
\mathrm{k}_{\mathrm{e}}=\frac{\mathrm{CL}}{\mathrm{Vd}}=\frac{\ln \left(\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}\right)}{\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)}=\frac{\ln \mathrm{C}_{1}-\ln \mathrm{C}_{2}}{\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)}
$$

Half-life

$$
t_{1 / 2}=\frac{0.693 \cdot v d}{C L}=\frac{\ln (2)}{k_{e}}=\frac{0.693}{k_{e}}
$$

Intravenous bolus

Initial concentration

$$
C_{0}=\frac{D}{V d}
$$

Plasma concentration (single dose)

$$
\mathrm{C}=\mathrm{C}_{0} \cdot \mathrm{e}^{-\mathrm{k}_{\mathrm{e}} \cdot \mathrm{t}}
$$

Plasma concentration (multiple dose)

$$
C=\frac{C_{0} \cdot e^{-k_{\mathrm{e}} \cdot t}}{\left(1-\mathrm{e}^{-k_{e} \cdot \tau}\right)}
$$

Peak (multiple dose)

$$
C_{\max }=\frac{\mathrm{C}_{0}}{\left(1-\mathrm{e}^{-k_{e} \cdot \tau}\right)}
$$

Trough (multiple dose)

$$
C_{\min }=\frac{C_{0} \cdot e^{-k_{e} \cdot \tau}}{\left(1-e^{-k_{e} \cdot \tau}\right)}
$$

Average concentration (steady state)

$$
\overline{\mathrm{C}}_{\mathrm{p}_{s 8}}=\frac{\mathrm{D}}{\mathrm{CL} \cdot \tau}
$$

Oral administration

Plasma concentration (single dose)

$$
\mathrm{C}=\frac{\mathrm{F} \cdot \mathrm{D} \cdot \mathrm{k}_{\mathrm{a}}}{\operatorname{Vd}\left(\mathrm{k}_{\mathrm{a}}-\mathrm{k}_{\mathrm{e}}\right)} \cdot\left(\mathrm{e}^{-\mathrm{k}_{\mathrm{e}} \cdot \mathrm{t}}-\mathrm{e}^{-\mathrm{k}_{\mathrm{e}} \cdot \mathrm{t}}\right)
$$

Time of maximum concentration (single dose)

$$
\mathrm{t}_{\max }=\frac{\ln \left(\frac{\mathrm{k}_{\mathrm{a}}}{\mathrm{k}_{\mathrm{e}}}\right)}{\left(\mathrm{k}_{\mathrm{a}}-\mathrm{k}_{\mathrm{e}}\right)}
$$

Plasma concentration (multiple dose)

$$
C=\frac{F \cdot D \cdot k_{a}}{\operatorname{Vd}\left(k_{a}-k_{e}\right)} \cdot\left(\frac{e^{-k_{e} \cdot t}}{\left(1-e^{-k_{e} \cdot \tau}\right)}-\frac{e^{-k_{\mathrm{a}} \cdot t}}{\left(1-\mathrm{e}^{-k_{\mathrm{a}} \cdot \tau}\right)}\right)
$$

Time of maximum concentration (multiple dose)

$$
\mathrm{t}_{\max }=\frac{\ln \left(\frac{\mathrm{k}_{\mathrm{a}} \cdot\left(1-\mathrm{e}^{-\mathrm{k}_{\mathrm{e}} \cdot \tau}\right)}{\mathrm{k}_{\mathrm{e}} \cdot\left(1-\mathrm{e}^{-\mathrm{k}_{\mathrm{a}} \cdot \tau}\right)}\right)}{\left(\mathrm{k}_{\mathrm{a}}-\mathrm{k}_{\mathrm{e}}\right)}
$$

Average concentration (steady state)

$$
\overline{\mathrm{C}}=\frac{\mathrm{F} \cdot \mathrm{D}}{\mathrm{CL} \cdot \tau}
$$

Clearance

$$
\begin{aligned}
& C l=\frac{\text { Dose } \cdot F}{A U C} \\
& C l=k_{e} \cdot V_{d}
\end{aligned}
$$

\qquad
UFID\#: \qquad

Constant rate infusion

Plasma concentration (during infusion)
$\mathrm{C}=\frac{\mathrm{k}_{0}}{\mathrm{CL}} \cdot\left(1-\mathrm{e}^{-\mathrm{k}_{\mathrm{c}} t}\right)$
Plasma concentration (steady state)

$$
\mathrm{C}=\frac{\mathrm{k}_{0}}{\mathrm{CL}}
$$

Calculated clearance (Chiou equation)

$$
\mathrm{CL}=\frac{2 \cdot \mathrm{k}_{0}}{\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)}+\frac{2 \cdot \mathrm{Vd} \cdot\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)}{\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right) \cdot\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)}
$$

Short-term infusion

Peak (single dose)

$$
C_{\max (1)}=\frac{D}{C L \cdot T} \cdot\left(1-\mathrm{e}^{-\mathrm{k}_{\mathrm{e}} \cdot \mathrm{~T}}\right)
$$

Trough (single dose)

$$
\mathrm{C}_{\min (1)}=\mathrm{C}_{\max (1)} \cdot \mathrm{e}^{-\mathrm{k}_{\mathrm{e}}(\tau-\mathrm{T})}
$$

Peak (multiple dose)

$$
C_{\max }=\frac{\mathrm{D}}{\mathrm{CL} \cdot \mathrm{~T}} \cdot \frac{\left(1-\mathrm{e}^{-k_{k} \cdot \mathrm{~T}}\right)}{\left(1-\mathrm{e}^{-k_{e} \tau}\right)}
$$

Trough (multiple dose)

$$
\mathrm{C}_{\min }=\mathrm{C}_{\max } \cdot \mathrm{e}^{-\mathrm{k}_{\mathrm{e}}(\tau-\mathrm{T})}
$$

Calculated elimination rate constant

$$
\mathrm{k}_{\mathrm{e}}=\frac{\ln \left(\frac{\mathrm{C}_{\max }^{*}}{\mathrm{C}_{\min }^{*}}\right)}{\Delta \mathrm{t}}
$$

with $\mathrm{C}_{\text {max }}{ }^{*}=$ measured peak and $\mathrm{C}_{\text {min }}{ }^{*}=$ measured trough, measured over the time interval Δt

Calculated peak

$$
\mathrm{C}_{\max }=\frac{\mathrm{C}_{\max }^{*}}{\mathrm{e}^{-\mathrm{k}_{e} t^{t}}}
$$

with $\mathrm{C}_{\text {max }}=$ measured peak, measured at time t after the end of the infusion

Calculated trough

$$
\mathrm{C}_{\min }=\mathrm{C}_{\min }^{*} \cdot \mathrm{e}^{-\mathrm{k}_{\mathrm{e}} t^{t}}
$$

with $\mathrm{C}_{\text {min }}=$ measured trough, measured at time $t^{\prime \prime}$ before the start of the next infusion

Calculated volume of distribution

$$
V d=\frac{D}{k_{e} \cdot T} \cdot \frac{\left(1-e^{-k_{e} \cdot T}\right)}{\left[C_{\max }-\left(C_{\min } \cdot e^{-k_{e} \cdot T}\right)\right]}
$$

Calculated recommended dosing interval
$\tau=\frac{\ln \left(\frac{\mathrm{C}_{\text {max(desired) }}}{\mathrm{C}_{\text {min(desired) }}}\right)}{\mathrm{k}_{\mathrm{e}}}+\mathrm{T}$

Calculated recommended dose

$\mathrm{D}=\mathrm{C}_{\text {max(desirec) }} \cdot \mathrm{k}_{\mathrm{e}} \cdot \mathrm{V} \cdot \mathrm{T} \cdot \frac{\left(1-\mathrm{e}^{-\mathrm{k}_{e} \tau}\right)}{\left(1-\mathrm{e}^{-\mathrm{k}_{\mathrm{e}} \mathrm{T}}\right)}$

Two-Compartment-Body Model

$\mathrm{C}=\mathrm{a} \bullet \mathrm{e}^{-a t}+\mathrm{b} \bullet \mathrm{e}^{-\boldsymbol{A}}$
$\operatorname{AUC}_{\infty}=\mathrm{a} / \alpha+\mathrm{b} / \beta$
$\mathrm{Vd}_{\text {area }}>\mathrm{Vd}_{\mathrm{sc}}>\mathrm{Vc}$

Creatinine Clearance

$\mathrm{CL}_{\text {creat }}($ male $)=\frac{(140-\text { age }) \bullet \text { weight }}{72 \bullet \mathrm{Cp}_{\text {creat }}}$
$\mathrm{CL}_{\text {creat }}($ female $)=\frac{(140-\text { age }) \cdot \text { weight }}{85 \bullet \mathrm{Cp}_{\text {creat }}}$
With weight in kg , age in years, creatinine plasma conc. in $\mathrm{mg} / \mathrm{dl}$ and $\mathrm{CL}_{\text {creat }}$ in $\mathrm{ml} / \mathrm{min}$
\qquad
UFID\#: \qquad

K_{e} for aminoglycosides

$\mathrm{K}_{\mathrm{e}}=0.00293(\mathrm{CrCL})+0.014$

Metabolic and Renal Clearance

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{H}}=\frac{C l_{\text {int }} \cdot f u_{b}}{Q_{H}+C l_{\text {int }} \cdot f u_{b}} \\
& \mathrm{Cl}_{\mathrm{H}}=E_{H} \cdot Q_{H}=\frac{Q_{H} \cdot C l_{\text {int }} \cdot f u_{b}}{Q_{H}+C l_{\text {int }} \cdot f u_{b}} \\
& \mathrm{~F}_{\mathrm{H}}=\frac{Q_{H}}{Q_{H}+C l_{\text {int }} \cdot f u_{b}} \\
& \mathrm{Cl}_{\text {ren }}=\text { RBF•E }=G F R \cdot \frac{\mathrm{C}_{\text {in }}-\mathrm{C}_{\text {out }}}{\mathrm{C}_{\text {in }}} \\
& \mathrm{Cl}_{\text {ren }}=\frac{\text { rate of excretion }}{\text { plasma concentration }} \\
& \mathrm{Cl}_{\text {ren }}=f u \cdot G F R+\left[\frac{\text { Rate of secretion }- \text { Rate of reabsorption }}{\text { Plasma concentration }}\right] \\
& \mathrm{Cl}_{\text {ren }}=\frac{\text { Urine flow } \cdot \text { urine concentration }}{\text { Plasma concentration }}
\end{aligned}
$$

Ideal Body Weight

Male

IBW $=50 \mathrm{~kg}+2.3 \mathrm{~kg}$ for each inch over 5 ft in height

Female

IBW $=45.5 \mathrm{~kg}+2.3 \mathrm{~kg}$ for each inch over 5 ft in height

Obese
$\mathrm{ABW}=\mathrm{IBW}+0.4^{*}(\mathrm{TBW}-\mathrm{IBW})$

Volume of Distribution

$\mathrm{V}=\mathrm{V}_{\mathrm{P}}+\mathrm{V}_{\mathrm{T}} \cdot \mathrm{K}_{\mathrm{P}}$
$V=V_{P}+V_{T} \cdot \frac{f u}{f u_{T}}$

Clearance

$$
\mathrm{Cl}=\frac{\text { Dose }}{\text { AUC }}
$$

$C l=k_{e} \cdot V_{d}$
\qquad
UFID\#: \qquad

Constant rate infusion

Plasma concentration (during infusion)

$$
C=\frac{\mathrm{k}_{0}}{\mathrm{CL}} \cdot\left(1-\mathrm{e}^{-\mathrm{k}_{\mathrm{e}} \cdot t}\right)
$$

Plasma concentration (steady state)

$$
\mathrm{C}=\frac{\mathrm{k}_{0}}{\mathrm{CL}}
$$

Calculated clearance (Chiou equation)

$$
\mathrm{CL}=\frac{2 \cdot \mathrm{k}_{0}}{\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)}+\frac{2 \cdot \mathrm{Vd} \cdot\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)}{\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right) \cdot\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)}
$$

Short-term infusion

Peak (single dose)

$$
C_{\max (1)}=\frac{\mathrm{D}}{\mathrm{CL} \cdot \mathrm{~T}} \cdot\left(1-\mathrm{e}^{-k_{\epsilon} \mathrm{T}}\right)
$$

Trough (single dose)

$$
\mathrm{C}_{\min (1)}=\mathrm{C}_{\max (1)} \cdot \mathrm{e}^{-\mathrm{k}_{\mathrm{e}}(\tau-\mathrm{T})}
$$

Peak (multiple dose)

$$
C_{\max }=\frac{D}{C L \cdot T} \cdot \frac{\left(1-\mathrm{e}^{-k_{e} \cdot \mathrm{~T}}\right)}{\left(1-\mathrm{e}^{-k_{e} \cdot \tau}\right)}
$$

Trough (multiple dose)

$$
\mathrm{C}_{\text {min }}=\mathrm{C}_{\max } \cdot \mathrm{e}^{-k_{e}(\tau-\mathrm{T})}
$$

Calculated elimination rate constant

$$
\mathrm{k}_{\mathrm{e}}=\frac{\ln \left(\frac{\mathrm{C}_{\max }^{*}}{\mathrm{C}_{\min }^{*}}\right)}{\Delta \mathrm{t}}
$$

with $\mathrm{C}_{\text {max }}{ }^{*}=$ measured peak and $\mathrm{C}_{\text {min }}{ }^{*}=$ measured trough,
measured over the time interval Δt

Calculated peak

$\mathrm{C}_{\text {max }}=\frac{\mathrm{C}_{\text {max }}^{*}}{\mathrm{e}^{-k_{c} t^{*}}}$
with $\mathrm{C}_{\text {max }}=$ measured peak, measured at time t^{*} after the end of the infusion

Calculated trough

$\mathrm{C}_{\text {min }}=\mathrm{C}_{\text {min }}^{*} \cdot \mathrm{e}^{-\mathrm{k}_{\mathrm{e}} t^{*}}$
with $\mathrm{C}_{\text {min }}{ }^{*}=$ measured trough, measured at time t^{*} before the start of the next infusion

Calculated volume of distribution

$V d=\frac{D}{k_{e} \cdot T} \cdot \frac{\left(1-e^{-k_{e} \cdot T}\right)}{\left[C_{\max }-\left(C_{\min } \cdot e^{-k_{e} \cdot T}\right)\right]}$

Calculated recommended dosing interval
$\tau=\frac{\ln \left(\frac{\mathrm{C}_{\text {max(desired) }}}{\mathrm{C}_{\text {min(desired) }}}\right)}{\mathrm{k}_{\mathrm{e}}}+\mathrm{T}$

Calculated recommended dose

$$
\mathrm{D}=\mathrm{C}_{\max (d \text { desired })} \cdot \mathrm{k}_{\mathrm{e}} \cdot \mathrm{~V} \cdot \mathrm{~T} \cdot \frac{\left(1-\mathrm{e}^{-\mathrm{k}_{\mathrm{e}} \tau}\right)}{\left(1-\mathrm{e}^{-\mathrm{k}_{\mathrm{e}} \mathrm{~T}}\right)}
$$

Two-Compartment-Body Model

$$
\mathrm{C}=\mathrm{a} \bullet \mathrm{e}^{-\mathrm{ct}}+\mathrm{b} \bullet \mathrm{e}^{-\boldsymbol{A}}
$$

$$
\mathrm{AUC}_{\infty}=\mathrm{a} / \alpha+\mathrm{b} / \beta
$$

$\mathrm{Vd}_{\text {grea }}>\mathrm{Vd}_{\mathrm{go}}>\mathrm{Vc}$

Creatinine Clearance

$$
\begin{aligned}
& \mathrm{CL}_{\text {crat }}(\text { male })=\frac{(140-\text { age }) \bullet \text { weight }}{72 \bullet \mathrm{Cp}_{\text {creat }}} \\
& \mathrm{CL}_{\text {creat }}(\text { female })=\frac{(140-\text { age }) \bullet \text { weight }}{85 \bullet \mathrm{Cp}_{\text {creat }}}
\end{aligned}
$$

With weight in kg , age in years, creatinine plasma conc in $\mathrm{mg} / \mathrm{dl}$ and $\mathrm{CL}_{\text {creat }}$ in $\mathrm{ml} / \mathrm{min}$

2

Name:

UFID\#:

Name:
UFID\#:

,								

