Name:		
-------	--	--

PHA 5127

First Exam Fall 2009

On my honor, I have neither given nor received unauthorized aid in doing this assignment.

Name

Question Set/Points

- I. 30 pts
- II. 20 pts
- III. 15 pts
- IV 15 pts
- V. 25 pts
- VI. 10 pts
- VII. 10 pts
- VIII. 10 pts
- IX. 35 pts

TOTAL: 170 pts

Name:	

Question Set I (True or False)

(30 points)

True (A) or False (B). On the bubble sheet mark A for true or B for false. Assume passive diffusion as the driving force for distribution.

1: T F The larger the volume of distribution, the lower the plasma concentration.

- 2: T F The volume of distribution can not be larger than the actual volume of the patient taking the medicine.
- 3: T F For a drug that binds to a high affinity-low capacity binding protein in plasma, the f_u and the volume of distribution might depend on the dose of the drug.
- 4: T F A drug with a large volume of distribution is likely to have a narrow therapeutic window.
- 5: T F It is likely that drugs in liver disease patients might show a reduced volume of distribution.
- 6: T F A volume of distribution of 20 L for a lipophilic drug, suggest that the drug's plasma protein binding is more pronounced than the tissue binding.

Name:	
-------	--

Question Set II (20 points) True (A) or False (B). On the bubble sheet mark *A for true* or *B for false*.

True (A) or False (B). On the bubble sheet mark A for true or B for false. Consider a lipophilic acidic drug (pka=1, logP=5) and a lipophilic neutral drug B (logP=5). Both do not show any affinity to transporters and show similar tissue and plasma protein binding.

- 7: T F Drug B will enter the brain faster.
- 8: T F Drug A will be unable to enter the interstitial fluid.
- 9: T F Drug B be is likely to have a larger volume of distribution.
- 10: T F When the same dose of Drug A and B is given as an iv bolus injection, Drug A's C_o will be higher than Drug's B C_o .

Name:		

Question Set III

(15 points)

Listed in the Table are two properties of acidic drug molecules:

- the fraction ionized and
- the partition coefficient of the unionized form.

	Fraction unionized at pH 7.4	Partition coefficient
Drug A	0.5	2
Drug B	0.2	0.001
Drug C	0	0.0001
Drug D	1	3

Select the drug(s) (A, B, C, or D) that fits best (selection of 1-4 drugs is possible)

11: Drug will cross well built membranes the fastest.

12: Drugwill cross well built membranes the slowest.

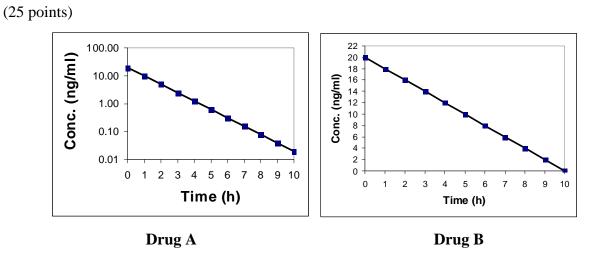
13: In areas of the body were membranes are extremely thin and larger aqueous pores exist, even drug...... will be taken up at a relative good rate.

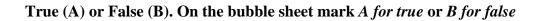
Name:	

Question Set IV (True or False)

(15 points)

True (A) or False (B). On the bubble sheet mark *A* for true or *B* for false. Assume no active transport.


14:	Т	F	Compared to fat, the liver is likely to have a higher rate of uptake for small
			lipophilic drugs due to its higher blood flow rate.
15:	Т	F	The rate with which hydrophilic compounds will move across well-built membranes will depend on the concentration gradient between total drug in plasma and total drug in tissue.


16: T F Permeability limited distribution is generally seen for small, lipophilic drugs

Name:	

Question Set V (True or False)

17:	Т	F	Drug B's rate of elimination is affected by the amount of drug in the body.
18:	Т	F	Drug B's elimination rate constant has the unit "ng/ml".
19:	Т	F	For Drug A, the fraction of drug eliminated per hour is constant.
20:	Т	F	Drug B's concentration-time profile might be explained by saturated metabolic enzymes.
21:	Т	F	Drug A's elimination rate constant has the units "ng/ml".

Name:		
-------	--	--

Question Set VI

(10 points)

Imagine a drug that is given as an intravenous bolus. The dose was 80 mg. The elimination follows first order principles. three hours after administration the drug concentration C1 of 1.48 μ g/ml is observed. Four hours after the administration the concentration C2 was 0.37 μ g/ml

22: What is the elimination rate constant of this drug?

A) 0.346 h⁻¹
B) 1.386 h
C) 1.386 h⁻¹
D) 0.555 μg/(ml*h)
E) 0.370 h⁻¹

23: What will the concentration be 4.5 hours after injection?

A) 0.185 μg/ml
B) 0.370 mg/ml
C) 0 μg/ml
D) 0.185 μg/ml
E) none of the above

Name:		

Question Set VII

(10 points)

24: **A 200 mg dose** of a drug was administered to **patient 1** and **patient 2** by IV bolus injection. For patients 1 and 2, the initial concentrations were 1.25mg/L and 2.5mg/L, respectively. This drug follows a one-compartment body model, crosses membranes easily, distributes well into all tissues, and is around 50% bound to plasma proteins. Why is the initial plasma concentration different for these two patients?

Select the INCORRECT ANSWER

- A) Patient 1 has more fat tissue than Patient 2.
- B) Fraction unbound in plasma in Patient 1 is higher than that in Patient 2.
- C) Tissue unbound fraction in Patient 1 is higher than that in Patient 2.
- D) Patient 1 has a smaller volume of distribution than Patient 1.

Name:	

Question Set VIII

(10 points)

If we know that the plasma drug concentration 4 hours after a gentamycin dose was given is 4.2 mg/L and the half live is 3 hours, what was the concentration after 1 hours. Assume that the result will be between 1.0 and 9.9.mg/L.

25: Mark A, B, C, or D, if the number before the decimal point is 1 (A), 2(B), 3(C), 4(D),
5(E). *Leave blank if this is not the case.*

26: Mark A, B, C, or D, if the number **before** the decimal point is 6 (A), 7(B), 8(C), 9(D), *Leave blank if this is not the case.*

27; Mark A, B, C, or D, if the number **after** the decimal point is 1(A), 2(B), 3(C), 4(D), 5(E). *Leave blank if this is not the case.*

28: Mark A, B, C, or D, if the number **after** the decimal point is 6 (A), 7(B), 8(C), 9(D), **0** (E) *Leave blank if this is not the case.*

Name:	

Question Set IX

(35 points)

29: Т F Free drug concentrations are always the same in plasma and tissues. 30: Т F The slower the absorption from the muscle into the blood, the lower the maximum drug concentration observed in the plasma. 31: Т F The slower the absorption of a drug from the muscle into the blood, the lower the plasma drug concentration at later time points. 32: Т F A slow absorption might allow less frequent dosing. F A slower absorption might be advantageous for a drug with a narrow 33: Т therapeutic window. 34: Т F Plasma is obtained from blood by letting it clot. 35: Т F Concentrations in plasma are of relevance for the drug therapy as they are generally identical to concentrations at the target site

Name:

Useful Pharmacokinetic Equations

Symbols

D = dose

 τ = dosing interval

CL = clearance

Vd = volume of distribution

 k_e = elimination rate constant k_a = absorption rate constant

F = fraction absorbed (bioavailability)

 K_0 = infusion rate

T = duration of infusion

C = plasma concentration

General

Elimination rate constant

$$k_{e} = \frac{CL}{Vd} = \frac{\ln\left(\frac{C_{1}}{C_{2}}\right)}{(t_{2} - t_{1})} = \frac{\ln C_{1} - \ln C_{2}}{(t_{2} - t_{1})}$$

Half-life

 $t_{1/2} = \frac{0.693 \cdot Vd}{CL} = \frac{\ln(2)}{k_e} = \frac{0.693}{k_e}$

Intravenous bolus

Initial concentration

$$C_0 = \frac{D}{Vd}$$

Plasma concentration (single dose) $C = C_{o} \cdot e^{-k_{e} \cdot t}$

Plasma concentration (multiple dose)

$$C = \frac{C_0 \cdot e^{-k_e \cdot t}}{\left(1 - e^{-k_e \cdot \tau}\right)}$$

Peak (multiple dose)

$$C_{\max} = \frac{C_0}{\left(1 - e^{-k_c \cdot \tau}\right)}$$

Trough (multiple dose)

$$\mathbf{C}_{\min} = \frac{\mathbf{C}_0 \cdot \mathbf{e}^{-\mathbf{k}_e \cdot \tau}}{\left(1 - \mathbf{e}^{-\mathbf{k}_e \cdot \tau}\right)}$$

Average concentration (steady state)

$$\overline{C}p_{ss} = \frac{D}{CL \cdot \tau}$$

Oral administration

Plasma concentration (single dose)

$$C = \frac{F \cdot D \cdot k_{a}}{Vd(k_{a} - k_{e})} \cdot \left(e^{-k_{e} \cdot t} - e^{-k_{a} \cdot t}\right)$$

Time of maximum concentration (single dose)

$$t_{max} = \frac{ln\left(\frac{k_a}{k_e}\right)}{\left(k_a - k_e\right)}$$

Plasma concentration (multiple dose)

$$C = \frac{F \cdot D \cdot k_a}{Vd(k_a - k_e)} \cdot \left(\frac{e^{-k_e \cdot t}}{\left(1 - e^{-k_e \cdot \tau}\right)} - \frac{e^{-k_a \cdot t}}{\left(1 - e^{-k_a \cdot \tau}\right)}\right)$$

Time of maximum concentration (multiple dose)

$$t_{max} = \frac{ln \left(\frac{k_a \cdot \left(1 - e^{-k_e \cdot \tau}\right)}{k_e \cdot \left(1 - e^{-k_a \cdot \tau}\right)} \right)}{\left(k_a - k_e\right)}$$

Average concentration (steady state)

$$\overline{\mathbf{C}} = \frac{\mathbf{F} \cdot \mathbf{D}}{\mathbf{C} \mathbf{L} \cdot \boldsymbol{\tau}}$$

Clearance

$$Cl = \frac{Dose \cdot F}{AUC}$$

 $Cl = k_e \cdot V_d$

Equations/Useful_pharmacokinetic_equ_5127

Name:	

Constant rate infusion

Plasma concentration (during infusion)

$$C = \frac{K_0}{CL} \cdot \left(1 - e^{-k_c \cdot t}\right)$$

Plasma concentration (steady state)

$$C = \frac{k_0}{CL}$$

Calculated clearance (Chiou equation)

$$CL = \frac{2 \cdot k_0}{(C_1 + C_2)} + \frac{2 \cdot Vd \cdot (C_1 - C_2)}{(C_1 + C_2) \cdot (t_2 - t_1)}$$

Short-term infusion

Peak (single dose)

$$C_{\max(1)} = \frac{D}{CL \cdot T} \cdot \left(1 - e^{-k_e \cdot T}\right)$$

Trough (single dose)

 $\mathbf{C}_{\min(1)} = \mathbf{C}_{\max(1)} \cdot \mathbf{e}^{-\mathbf{k}_{\varepsilon}(\tau-T)}$

Peak (multiple dose)

$$C_{max} = \frac{D}{CL \cdot T} \cdot \frac{\left(1 - e^{-k_e \cdot T}\right)}{\left(1 - e^{-k_e \cdot \tau}\right)}$$

Trough (multiple dose)

 $\mathbf{C}_{\min} = \mathbf{C}_{\max} \cdot \mathbf{e}^{-\mathbf{k}_{e} \cdot (\tau - T)}$

Calculated elimination rate constant

$$k_{e} = \frac{\ln\left(\frac{C_{max}^{\star}}{C_{min}^{\star}}\right)}{\Delta t}$$

with C_{max}^{*} = measured peak and C_{min}^{*} = measured trough, measured over the time interval Δt Calculated peak

$$C_{\max} = \frac{C_{\max}^*}{e_{\star}^{-k_e \cdot t^*}}$$

with C_{max}^{*} = measured peak, measured at time t after the end of the infusion

Calculated trough

$$\mathbf{C}_{\min} = \mathbf{C}_{\min}^* \cdot \mathbf{e}^{-\mathbf{k}_{e} \cdot \mathbf{i}}$$

with C_{min}^{*} = measured trough, measured at time t^{*} before the start of the next infusion

Calculated volume of distribution

$$Vd = \frac{D}{k_e \cdot T} \cdot \frac{\left(1 - e^{-k_e \cdot T}\right)}{\left[C_{\max} - \left(C_{\min} \cdot e^{-k_e \cdot T}\right)\right]}$$

Calculated recommended dosing interval

$$\tau = \frac{\ln\left(\frac{C_{max(desired)}}{C_{min(desired)}}\right)}{k_{e}} + T$$

Calculated recommended dose

$$\mathbf{D} = \mathbf{C}_{\max(\text{desired})} \cdot \mathbf{k}_{e} \cdot \mathbf{V} \cdot \mathbf{T} \cdot \frac{\left(1 - e^{-k_{e} \cdot \mathbf{r}}\right)}{\left(1 - e^{-k_{e} \cdot \mathbf{T}}\right)}$$

Two-Compartment-Body Model

$$C = a \bullet e^{-\alpha t} + b \bullet e^{-\beta t}$$

$$AUC_{\infty} = a / \alpha + b / \beta$$

 $Vd_{area} > Vd_{ss} > Vc$

Creatinine Clearance

$$CL_{creat}(male) = \frac{(140 - age) \bullet weight}{72 \bullet Cp_{creat}}$$

$$CL_{creat}(female) = \frac{(140 - age) \cdot weight}{2}$$

 $85 \bullet Cp_{creat}$ With weight in kg, age in years, creatinine plasma conc. in mg/dl and CL_{creat} in ml/min

Equations/Useful_pharmacokinetic_equ_5127

Name:	

Ke for aminoglycosides

Ke = 0.00293(CrCL) + 0.014

Metabolic and Renal Clearance

E _H	=	$\frac{Cl_{int} \cdot fu_{b}}{Q_{H} + Cl_{int} \cdot fu_{b}}$
CI _H	=	$E_{H} \cdot Q_{H} = \frac{Q_{H} \cdot CI_{\text{int}} \cdot fu_{b}}{Q_{H} + CI_{\text{int}} \cdot fu_{b}}$
F _H	=	$\frac{Q_{H}}{Q_{H} + Cl_{\text{int}} \cdot fu_{b}}$
Cl _{ren}	=	$RBF \cdot E = \mathrm{GFR} \cdot \frac{\mathrm{C_{in}} - \mathrm{C_{out}}}{\mathrm{C_{in}}}$
Cl _{ren}	=	rate of excretion plasma concentration
Cl _{ren}	=	$fu \cdot GFR + \left[\frac{\text{Rate of secretion - Rate of reabsorption}}{\text{Plasma concentration}}\right]$
Cl _{ren}	=	Urine flow · urine concentration

Plasma concentration

Ideal Body Weight

Male

IBW = 50 kg + 2.3 kg for each inch over 5ft in height

Female

IBW = 45.5 kg + 2.3 kg for each inch over 5ft in height

Obese

ABW = IBW + 0.4*(TBW-IBW)

$$\frac{\text{Volume of Distribution}}{V=V_{P}+V_{T}\cdot K_{P}}$$

$$V = V_{\scriptscriptstyle P} + V_{\scriptscriptstyle T} \cdot \frac{fu}{fu_{\scriptscriptstyle T}}$$

Clearance

$$Cl = \frac{Dose}{AUC}$$

$$Cl = k_e \cdot V_d$$

Equations/Useful_pharmacokinetic_equ_5127

Constant rate infusion

Plasma concentration (during infusion)

$$\mathbf{C} = \frac{\mathbf{K}_0}{\mathbf{CL}} \cdot \left(1 - \mathbf{e}^{-\mathbf{k}_{e} \cdot \mathbf{t}} \right)$$

Plasma concentration (steady state) $C = \frac{k_0}{CL}$

Calculated clearance (Chiou equation)

$$CL = \frac{2 \cdot k_0}{(C_1 + C_2)} + \frac{2 \cdot Vd \cdot (C_1 - C_2)}{(C_1 + C_2) \cdot (t_2 - t_1)}$$

Short-term infusion

Peak (single dose)

$$C_{\max(1)} = \frac{D}{CL \cdot T} \cdot \left(1 - e^{-k_e \cdot T}\right)$$

Trough (single dose) $C_{min(1)} = C_{max(1)} \cdot e^{-k_e(\tau-T)}$

Peak (multiple dose)

$$C_{max} = \frac{D}{CL \cdot T} \cdot \frac{\left(1 - e^{-k_e \cdot T}\right)}{\left(1 - e^{-k_e \cdot \tau}\right)}$$

Trough (multiple dose)

$$\mathbf{C}_{min} = \mathbf{C}_{max} \cdot \mathbf{e}^{-\mathbf{k}_{e} \cdot (\tau - T)}$$

Calculated elimination rate constant

$$k_{e} = \frac{\ln\left(\frac{C_{max}^{*}}{C_{min}^{*}}\right)}{\Delta t}$$

with C_{max} = measured peak and C_{min} = measured trough, measured over the time interval Δt **Calculated** peak

$$C_{max} = \frac{C_{max}^*}{e^{-k_e \cdot t^*}}$$

with C_{max} = measured peak, measured at time t after the end of the infusion

Calculated trough

 $\mathbf{C}_{min} = \mathbf{C}_{min}^{\star} \cdot e^{-k_e \cdot t^{\star}}$

with C_{min}^{*} = measured trough, measured at time t before the start of the next infusion

Calculated volume of distribution

$$Vd = \frac{D}{k_e \cdot T} \cdot \frac{\left(1 - e^{-k_e \cdot T}\right)}{\left[C_{\max} - \left(C_{\min} \cdot e^{-k_e \cdot T}\right)\right]}$$

Calculated recommended dosing interval

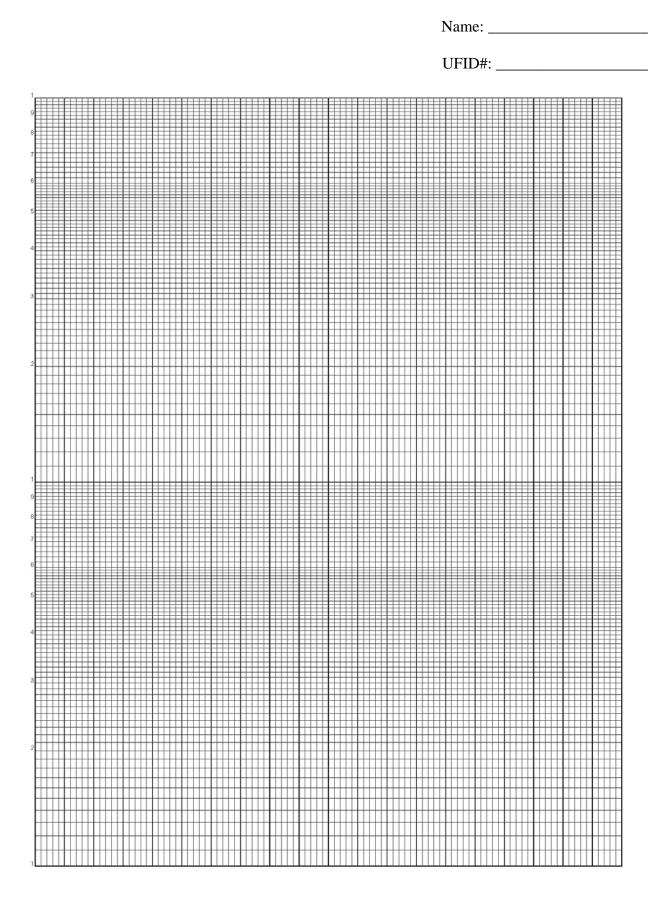
$$\tau = \frac{ln\left(\frac{C_{max(desired)}}{C_{min(desired)}}\right)}{k_{e}} + T$$

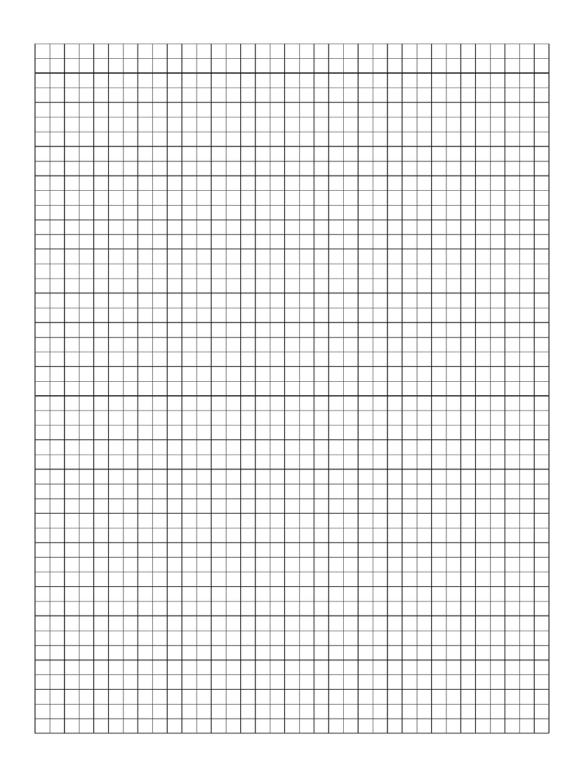
Calculated recommended dose

$$D = C_{max(desired)} \cdot k_e \cdot V \cdot T \cdot \frac{\left(1 - e^{-k_e \cdot r}\right)}{\left(1 - e^{-k_e \cdot T}\right)}$$

Two-Compartment-Body Model

$$C = a \bullet e^{-\alpha t} + b \bullet e^{-\beta t}$$
$$AUC_{so} = a / \alpha + b / \beta$$
$$Vd_{srea} > Vd_{ss} > Vc$$


Creatinine Clearance


$$CL_{creat}(male) = \frac{(140 - age) \bullet weight}{72 \bullet Cp_{creat}}$$

$$CL_{creat}(female) = \frac{(140 - age) \bullet weight}{85 \bullet Cp_{creat}}$$

With weight in kg, age in years, creatinine plasma conc. in mg/dl and $\mathrm{CL}_{\mathrm{creat}}$ in ml/min

Equations/Useful_pharmacokinetic_equ_5127

