
## PHA 5127

- b) Fig 1 shows the plasma concentration time profiles of three subjects A, B and C after the administration of the same dose of a drug X.
- i) From the profile explain the differences in the route of administration between the subjects. Write a short answer in terms of LADME.
- ii) Between subjects A and B identify the subject from which the drug X is eliminated faster?



- The table1 shows the serum concentration profiles of a certain drug in patient X. Please specify the units for the Pk parameters to get full credit.
- a) Determine if the elimination process is a first order or a zero order process. Plot the data on a semilog paper.
- b) Calculate Ke, the first order elimination rate constant.
- c) Calculate AUC <sub>0-tlast</sub> and AUC <sub>0-inf</sub> by trapezoidal rule.
- d) Calculate the concentration of the drug X in serum at time 5hr.

| Tabl | e | 1 |
|------|---|---|
|------|---|---|

| Time (hr) | Conc.(ng/ml) |
|-----------|--------------|
| 0         | 20           |
| 1         | 16.37        |
| 1.5       | 14.82        |
| 2         | 13.41        |
| 4         | 8.99         |
| 6         | 6.02         |
| 8         | 4.04         |
| 10        | 2.71         |
| 12        | 1.81         |

True or False:

- 1) Therapeutic Drug Monitoring (TDM) in individual patients is important for drugs with a narrow therapeutic index. (T/F)
- 2) When the change in amount of the drug in the body is related to the amount by the following equation  $\frac{dX}{dt} = -k * X^0$ , where X is the amount of the drug at a given time t, then we say the elimination is a zero order process. (T/F)
- 3) The plasma concentration time profile of a certain drug is dependent on the dosage form. (T/F)