Name:		
-------	--	--

PHA 5127

First Exam Fall 2010

On my honor, I have neither given nor received unauthorized aid in doing this assignment.

Name

Question Set/Points

- I. 30 pts
- II. 20 pts
- III. 15 pts
- IV 15 pts
- V. 25 pts
- VI. 10 pts
- VII. 10 pts
- VIII. 10 pts
- IX. 35 pts

TOTAL: 170 pts

Name:	

Question Set I (True or False)

(30 points)

True (A) or False (B). On the bubble sheet mark *A* for true or *B* for false. Assume passive diffusion as the driving force for distribution.

- 1: T F If the elimination of a drug is described by a first order process, it will be described by a one compartment model of drug distribution.
- 2: T F A lipophilic drug can not have a volume of distribution that is smaller than V_T .
- 3: T F The pka of an acidic drug that shows perfusion limited distribution into tissues is likely to be small.
- 4: T F Two drugs that have similar elimination half-lives will have similar clearance estimates.
- 5: T F The same dose of a drug is given orally either as a solution or in form of a slow dissolving crystal suspension. The solution will show higher maximum concentrations in plasma.
- 6: T F Serum can be prepared by adding heparin to blood.

Name:	
-------	--

UFID#:

Question Set II (20 points) True (A) or False (B). On the bubble sheet mark *A for true* or *B for false*.

True (A) or False (B). On the bubble sheet mark A for true or B for false. Consider a lipophilic acidic drug (pka=14, logP=5) and a lipophilic neutral drug B (logP=5). Both do not show any affinity to transporters and show similar tissue and plasma protein binding.

- 7: T F Drug B will enter the brain faster.
- 8: T F Drug A will be unable to enter the interstitial fluid.
- 9: T F Drug B be is likely to have a larger volume of distribution.
- 10: T F When the same dose of Drug A and B is given as an iv bolus injection, Drug A's C_o will be higher than Drug's B C_o .

Name:			

Question Set III

(15 points)

Listed in the Table are two properties of acidic drug molecules:

- the fraction ionized at ph=7.4 and
- the partition coefficient of the unionized form.

DRUG	Fraction Unionized	Partition	Molecular
	at pH=7.4	Coefficient of	Weight
		Unionized form	(Dalton)
1	0.5	2.1	240
2	0.91	0.07	290
3	0.074	10	320
4	0.72	0.005	456

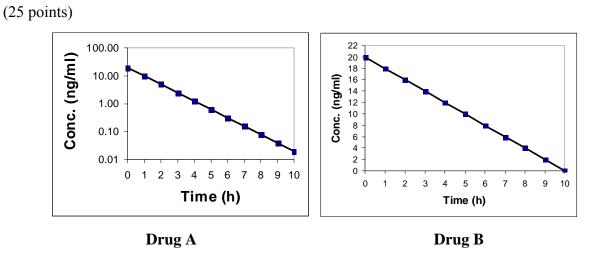
11: Select the correct rank order with which drugs 1-4 will enter brain tissue. Assume that the drugs are not subject to transporters at the blood-brain barrier.

- A: 1 slower than 2 slower than 3 slower than 4
- B: 1 slower than 3 slower than 2 slower than 4
- C: 4 slower than 2 slower than 3 slower than 1
- D: 4 slower than 2 slower than 1 slower than 3
- E: 3 slower than 1 slower than 4 slower than 2

Name:	

Question Set IV (True or False)

(15 points)


True (A) or False (B). On the bubble sheet mark *A* for true or *B* for false. Assume no active transport.

- 12: T F Compared to fat, the liver is likely to have a higher rate of uptake for small lipophilic drugs due to its higher blood flow rate.
- 13: T F The rate with which hydrophilic compounds will move across well-built membranes will depend on the concentration gradient between total drug in plasma and total drug in tissue.
- 14: T F Permeability limited distribution is generally seen for small, lipophilic drugs

Name:			

Question Set V (True or False)

True (A) or False (B). On the bubble sheet mark A for true or B for false

15:	Т	F	Drug B's rate of elimination is affected by the amount of drug in the body.
16:	Т	F	Drug A's elimination rate constant has the unit "ng/ml".
17:	Т	F	For Drug B, the fraction of drug eliminated per hour is constant.
18:	Т	F	Drug A's concentration-time profile might be explained by saturated metabolic enzymes.
19:	Т	F	The half-life of drug B is 5 hours.

Name:		
-------	--	--

Question Set VI

(10 points)

- 20: An investigational new drug is eliminated entirely by hepatic metabolism, with a clearance of 1.40 L/min in subjects with an average liver blood flow of 1.50 L/min. What would be the expected clearance in a congestive heart failure patient with a liver blood flow of 1.10 L/min but no change in hepatic extraction ratio?
- A) 1.10 L/min
- B) 1.40 L/min
- C) 1.18 L/min
- D) 1.03 L/min
- E) None of the above
- 21: The lipophilic drug A has a volume of distribution of 100 L. In the presence of drug B, drug A is displaced from plasma albumin sites binding sites only (1.5-fold change in fraction unbound in plasma). Predict the change in volume of distribution for drug A. Assume negligible change in tissue binding
- A) 115 L
- B) 150 L
- C) 200 L
- D) 300 L
- E) None of the above

Name:		

Question Set VII

(10 points)

- How will the increase in both tissue binding and liver blood flow affect the initial concentration (C₀), clearance (CL), bioavailability (F) for tablet, AUC, and half-life (t_{1/2}) of a low-extraction drug? (Please note that ↔ means no change)
- $A{:} {\downarrow} C_0, {\uparrow} CL, {\downarrow} F, AUC {\downarrow}, {\downarrow} t_{1/2}$
- $B: \leftrightarrow C_0, \leftrightarrow CL, \uparrow F, AUC \uparrow, \leftrightarrow t_{1/2}$
- C: \downarrow C₀, \leftrightarrow CL, \leftrightarrow F, AUC \leftrightarrow , \uparrow t_{1/2}
- D: $\uparrow C_0$, $\downarrow CL$, \leftrightarrow F, AUC \uparrow , $\uparrow t_{1/2}$
- E: none of above combinations.

Question Set VIII

(10 points)

23. Chronic liver disease causes a 20% decrease in verapamil clearance. However, half-life of verapamil increases 4 fold. Clearly the volume of distribution has also changed due to the chronic liver disease. What is the volume of distribution of verapamil in a patient with chronic liver disease? (Healthy population values: CL= 60L/h; Vd= 300 L)

A.300L

B.1200L

C.960L

D.240L

E. None of above

Name:	
-------	--

Question Set IX

(35 points)

24:	Т	F	Free drug concentrations are always the same in plasma and tissues, when the distribution occurs instantaneously.
25:	Т	F	For a drug that shows permeability controlled uptake into all tissues, total drug concentrations are always higher in the plasma than in tissues.
26:	Т	F	When the Vd of a drug is 41L, we can conclude that the drug has no plasma protein binding or tissue binding.
27:	Т	F	A fast absorption might allow less frequent dosing.
28:	Т	F	A slower absorption might be advantageous for a drug with a narrow therapeutic window.
29:	Т	F	The Fick's law is: $dQ/dt=D*K*(Cplasma-Ctissue)/h$. The k in the equation denotes the first order elimination rate constant.
30:	Т	F	Concentrations in plasma are of relevance for the drug therapy as they are generally identical to concentrations at the target site

Useful Pharmacokinetic Equations

Symbols

 $\begin{array}{l} \mathsf{D} = \mathsf{dose} \\ \tau = \mathsf{dosing interval} \\ \mathsf{CL} = \mathsf{clearance} \\ \mathsf{Vd} = \mathsf{volume of distribution} \\ \mathsf{k}_e = \mathsf{elimination rate constant} \\ \mathsf{k}_a = \mathsf{absorption rate constant} \\ \mathsf{F} = \mathsf{fraction absorbed (bioavailability)} \\ \mathsf{K}_0 = \mathsf{infusion rate} \\ \mathsf{T} = \mathsf{duration of infusion} \\ \mathsf{C} = \mathsf{plasma concentration} \end{array}$

<u>General</u>

Elimination rate constant

$$k_{e} = \frac{CL}{Vd} = \frac{ln\left(\frac{C_{1}}{C_{2}}\right)}{(t_{2} - t_{1})} = \frac{lnC_{1} - lnC_{2}}{(t_{2} - t_{1})}$$

Half-life

 $t_{1/2} = \frac{0.693 \cdot Vd}{CL} = \frac{\ln(2)}{k_e} = \frac{0.693}{k_e}$

Intravenous bolus

Initial concentration

 $C_0 = \frac{D}{Vd}$

Plasma concentration (single dose) $C = C_0 \cdot e^{-k_e \cdot t}$

Plasma concentration (multiple dose)

$$C = \frac{C_0 \cdot e^{-k_e \cdot t}}{\left(1 - e^{-k_e \cdot \tau}\right)}$$

Peak (multiple dose)

 $\mathbf{C}_{\max} = \frac{\mathbf{C}_0}{\left(1 - \mathbf{e}^{-\mathbf{k}_e \cdot \tau}\right)}$

Trough (multiple dose)

$$\mathbf{C}_{\min} = \frac{\mathbf{C}_0 \cdot \mathbf{e}^{-\mathbf{k}_e \cdot \tau}}{\left(1 - \mathbf{e}^{-\mathbf{k}_e \cdot \tau}\right)}$$

Average concentration (steady state)

$$\overline{C}p_{ss} = \frac{D}{CL \cdot \tau}$$

Oral administration

Plasma concentration (single dose)

$$C = \frac{F \cdot D \cdot k_{a}}{Vd(k_{a} - k_{e})} \cdot \left(e^{-k_{e} \cdot t} - e^{-k_{a} \cdot t}\right)$$

Time of maximum concentration (single dose)

$$t_{max} = \frac{ln\left(\frac{k_{a}}{k_{e}}\right)}{\left(k_{a} - k_{e}\right)}$$

Plasma concentration (multiple dose)

$$\mathbf{C} = \frac{\mathbf{F} \cdot \mathbf{D} \cdot \mathbf{k}_{a}}{\mathbf{V} \mathbf{d} (\mathbf{k}_{a} - \mathbf{k}_{e})} \cdot \left(\frac{\mathbf{e}^{-\mathbf{k}_{e} \cdot \mathbf{t}}}{\left(1 - \mathbf{e}^{-\mathbf{k}_{e} \cdot \tau}\right)} - \frac{\mathbf{e}^{-\mathbf{k}_{a} \cdot \mathbf{t}}}{\left(1 - \mathbf{e}^{-\mathbf{k}_{a} \cdot \tau}\right)} \right)$$

Time of maximum concentration (multiple dose)

$$t_{max} = \frac{ln\!\!\left(\frac{k_a\cdot\!\left(1-e^{-k_e\cdot\tau}\right)}{k_e\cdot\!\left(1-e^{-k_a\cdot\tau}\right)}\right)}{\left(k_a-k_e\right)}$$

Average concentration (steady state) $\overline{C} = \frac{F \cdot D}{D}$

$$C = \frac{1}{CL \cdot \tau}$$

Clearance

$$Cl = \frac{Dose \cdot F}{AUC}$$

$$Cl = k_e \cdot V_d$$

Constant rate infusion

Plasma concentration (during infusion)

$$\mathbf{C} = \frac{\mathbf{k}_0}{\mathbf{C}\mathbf{L}} \cdot \left(1 - \mathbf{e}^{-\mathbf{k}_e \cdot \mathbf{t}}\right)$$

Plasma concentration (steady state)

$$C = \frac{k_0}{CL}$$

Calculated clearance (Chiou equation)

 $CL = \frac{2 \cdot k_0}{(C_1 + C_2)} + \frac{2 \cdot Vd \cdot (C_1 - C_2)}{(C_1 + C_2) \cdot (t_2 - t_1)}$

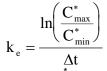
Short-term infusion

Peak (single dose)

$$C_{\max(1)} = \frac{D}{CL \cdot T} \cdot \left(1 - e^{-k_e \cdot T}\right)$$

Trough (single dose)

 $\mathbf{C}_{\min(1)} = \mathbf{C}_{\max(1)} \cdot \mathbf{e}^{-\mathbf{k}_{e}(\tau - T)}$


Peak (multiple dose)

$$C_{max} = \frac{D}{CL \cdot T} \cdot \frac{\left(1 - e^{-k_e \cdot T}\right)}{\left(1 - e^{-k_e \cdot \tau}\right)}$$

Trough (multiple dose)

 $\mathbf{C}_{\min} = \mathbf{C}_{\max} \cdot \mathbf{e}^{-\mathbf{k}_{e} \cdot (\tau - T)}$

Calculated elimination rate constant

with C_{max}^{*} = measured peak and C_{min}^{*} = measured trough, measured over the time interval Δt

Calculated peak

$$C_{\max} = \frac{C_{\max}^*}{e_{\star}^{-k_e \cdot t^*}}$$

with C_{max}^{*} = measured peak, measured at time t^{*} after the end of the infusion

Calculated trough

$$C_{\min} = C^*_{\min} \cdot e^{-k_e \cdot t^*}$$

with C_{min}^{*} = measured trough, measured at time t before the start of the next infusion

Calculated volume of distribution

$$Vd = \frac{D}{k_e \cdot T} \cdot \frac{\left(1 - e^{-k_e \cdot T}\right)}{\left[C_{\max} - \left(C_{\min} \cdot e^{-k_e \cdot T}\right)\right]}$$

Calculated recommended dosing interval

$$\tau = \frac{ln\left(\frac{C_{max(desired)}}{C_{min(desired)}}\right)}{k_{e}} + T$$

Calculated recommended dose

$$\mathbf{D} = \mathbf{C}_{\max(\text{desired})} \cdot \mathbf{k}_{e} \cdot \mathbf{V} \cdot \mathbf{T} \cdot \frac{\left(1 - e^{-k_{e} \cdot \tau}\right)}{\left(1 - e^{-k_{e} \cdot T}\right)}$$

Two-Compartment-Body Model

$$\mathbf{C} = \mathbf{a} \bullet \mathbf{e}^{-\alpha \mathbf{t}} + \mathbf{b} \bullet \mathbf{e}^{-\beta}$$

$$AUC_{\infty} = a / \alpha + b / \beta$$

$$Vd_{area} > Vd_{ss} > Vc$$

Creatinine Clearance

$$CL_{creat}$$
 (male) = $\frac{(140 - age) \bullet weight}{72 \bullet Cp_{creat}}$

$$CL_{creat}$$
 (female) = $\frac{(140 - age) \bullet weight}{85 \bullet Cp_{creat}}$

With weight in kg, age in years, creatinine plasma conc. in mg/dl and $\mbox{CL}_{\mbox{creat}}$ in ml/min

Ke for aminoglycosides

 $K_e = 0.00293(CrCL) + 0.014$

Metabolic and Renal Clearance

$$E_{H} = \frac{CI_{int} \cdot fu_{b}}{Q_{H} + CI_{int} \cdot fu_{b}}$$

$$CI_{H} = E_{H} \cdot Q_{H} = \frac{Q_{H} \cdot CI_{int} \cdot fu_{b}}{Q_{H} + CI_{int} \cdot fu_{b}}$$

$$F_{H} = \frac{Q_{H}}{Q_{H} + CI_{int} \cdot fu_{b}}$$

$$CI_{ren} = RBF \cdot E = GFR \cdot \frac{C_{in} - C_{out}}{C_{in}}$$

$$CI_{ren} = \frac{rate of excretion}{plasma concentration}$$

$$CI_{ren} = fu \cdot GFR + \left[\frac{Rate of secretion - Rate of reabsorption}{Plasma concentration}\right]$$

$$CI_{ren} = \frac{Urine flow \cdot urine concentration}{Plasma concentration}$$

Ideal Body Weight

Male

IBW = 50 kg + 2.3 kg for each inch over 5ft in height

Female

IBW = 45.5 kg + 2.3 kg for each inch over 5ft in height

Obese

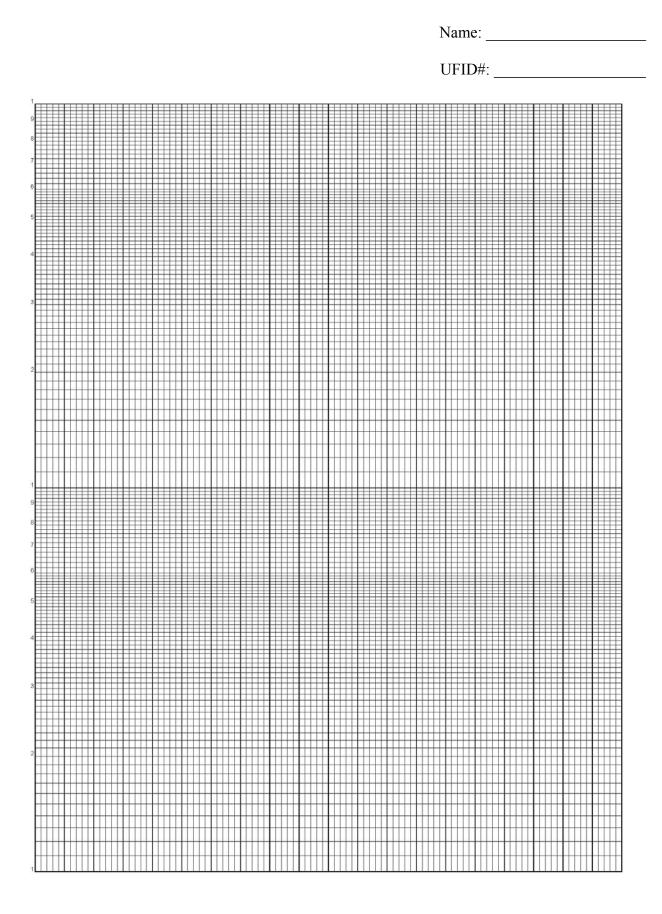
 $ABW = IBW + 0.4^{*}(TBW - IBW)$

Volume of Distribution

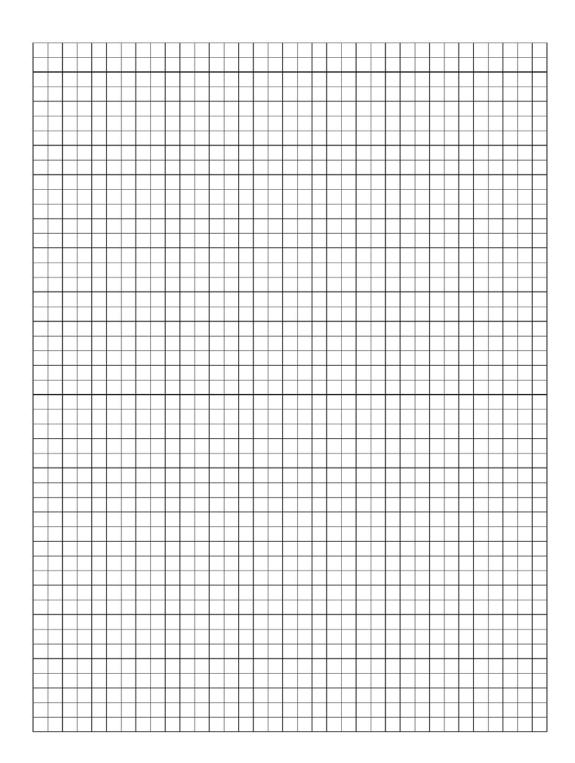
$$V=V_{P} + V_{T} \cdot K_{P}$$

 $V = V_{P} + V_{T} \cdot \frac{fu}{fu_{T}}$

Clearance


$$Cl = \frac{Dose}{AUC}$$

$$Cl = k_e \cdot V_a$$


For One Compartment Body Model

	For a single I.V. bolus administration:	For multiple I.V. bolus administration:
	$C_0 = \frac{D}{V}$	$Cn(t) = \frac{D}{V} \cdot \frac{\left(1 - e^{-nk_e\tau}\right)}{\left(1 - e^{-k_e\tau}\right)} \cdot e^{-k_et}$
If the dosing	$C = C_0 \cdot e^{-k_e t}$	at peak: t = 0; at steady state $n \rightarrow \infty$
involves the use		at trough: $t = \tau$
of I.V. bolus administration:		$C_{\max ss} = \frac{D}{V} \cdot \frac{1}{(1 - e^{-k_e \tau \tau})}$
		$C_{\min ss} = C_{\max ss} \cdot e^{-k_e \tau}$
	For a single short-term I.V. infusion:	For multiple short-term I.V. infusion at steady state:
If the dosing involves the use of I.V. infusion:	Since $\tau = t$ for C_{max} $C_{max} = \frac{D}{Vk_eT} \cdot \left(1 - e^{-k_eT}\right)$	$C_{\max} = \frac{D}{Vk_eT} \cdot \frac{\left(1 - e^{-k_eT}\right)}{\left(1 - e^{-k_eT}\right)}$
	$C_{\min} = C_{\max} \cdot e^{-k_e(\tau - T)}$	$C_{\min} = C_{\max} \cdot e^{-k_e(\tau - T)}$

$$\begin{array}{|c|c|c|c|c|} \hline \mbox{If the dosing involves a I.V. infusion (more equations):} & C_t = \frac{D}{Vk_eT} \cdot \left(e^{k_eT} - 1\right) \cdot e^{-k_et} \pmod{(most general eq.)} & \mbox{during infusion t = T so,} \\ \hline \mbox{C}_t = \frac{D}{Vk_eT} \cdot \left(1 - e^{-k_et}\right) \pmod{(during infusion)} & \mbox{at steady state t } \to \infty, e^{k_et}, t \to 0 \text{ so,} \\ \hline \mbox{C}_{pSS} = \frac{D}{Vk_eT} = \frac{k_0}{Vk_e} = \frac{k_0}{CL} \pmod{(steady state)} & \mbox{remembering } k_0 = \frac{D}{T} \mbox{ and} \\ \hline \mbox{C}_{L} = V \cdot k_e \\ \hline \mbox{For a single oral dose:} \\ \hline \mbox{C} = \frac{F \cdot D \cdot k_a}{V(k_a - k_e)} \cdot \left(e^{-k_et} - e^{-k_at}\right) \quad C = \frac{F \cdot D \cdot k_a}{V(k_a - k_e)} \cdot \left[\frac{e^{-k_et}}{(1 - e^{-k_e\tau})} - \frac{e^{-k_at}}{(1 - e^{-k_e\tau})}\right] \\ \hline \mbox{t}_{max} = \ln\left[\frac{k_a}{k_e}\right] \cdot \frac{1}{(k_a - k_e)} & t_{max} = \ln\left[\frac{k_a \cdot (1 - e^{-k_e\tau})}{k_e \cdot (1 - e^{-k_a\tau})}\right] \cdot \frac{1}{(k_a - k_e)} \end{array}$$

Name:	
-------	--

