PHA 5124 Homework 3

1. The renal clearances, the fractions unbound in plasma and the molecular weights of four drugs in a 70 kg subject are as follows:

	Cl _{ren} (mL/min)	fu	MW
X	20	0.5	500
Y	0.10	0.5	200
Z	20	0.1	800
Example	50	0.9	100

Check (with $\sqrt{ }$) the factor(s) that you think MUST be involved in the renal handling of each of these drugs and give brief reasons for your choice. (GFR is 130 mL/min and urine flow is 1.5mL/min.)

	Filtration	Secretion	Reabsorption
X			
Y			
Z			
Example	V		
	MW<20000		50<130*0.9=117

Bonus question: Which drug has active reabsorption?

- 2. Tacainide is a week base with pKa=9.0. Its unionized form is non-polar. It has a volume distribution of 25L, $t_{1/2}$ of 1 hour and fraction unbound (fu) of 0.1. The renal clearance accounts for 14% of the total clearance.
 - a. Calculate the renal clearance.
 - b. Is secretion or reabsorption definitely involved in the renal clearance of Tacainide? Why?
 - c. If we know that reabsorption is involved, how will the renal clearance change if pH of urine changes from 7.5 to 4.5? Why?
- 3. A 30 year-old white male patient needs to take gentamicin (aminoglycosides) for the treatment of gram-negative pneumonia infection. The body weight of this patient is 70kg. The volume distribution of gentamicin is 16.5 L.
 - a. Calculate the Creatinine Clearance (CrCL) for this patient
 - b. Calculate the elimination rate constant (k_e)
 - c. Calculate the total clearance (CL_T)
 - d. Calculate the non-renal clearance (CLnonren) (Hint: intercept ke)
 - e. Calculate the renal clearance (CLren)

Note: PLEASE circle your final answer for each question.