PHA 5127 Homework 4 solution

- 1. Drug X follows a one-compartment model after an IV bolus administration. The half-life of drug X is 0.693 hour, the volume distribution is 150 L and f_u is 0.5. There are multiple routes for the elimination of drug X. We know that filtration is the only factor involved in renal elimination (no re-absorption or secretion). Assume GFR is 130mL/min.
 - a. Calculate the elimination rate constant k_e
 - b. Calculate the total clearance
 - c. Calculate the renal clearance and the renal elimination rate constant k_{eren}
 - d. Calculate the non-renal clearance
 - e. Besides renal elimination, is it possible that hepatic elimination is the only other route of elimination? Why?

Answers:

- a. $k_e = 0.693/t_{1/2} = 0.693/0.693 = 1 \text{ hr}^{-1}$
- b. $CL_{tot}=k_e*V_d=1*150=150 L$
- c. CL_{ren}=f_u*GFR=0.5*130=65 mL/min=3.9 L/hr k_{eren}=CL_{ren}/V_d=3.9/150=0.026 hr⁻¹
- d. CL_{nonren}=CL_{tot}-CL_{ren}=150-3.9=146.1 L/hr
- e. No, it is impossible because CL_{nonren} =146.1 L/hr, which is larger than 90 L/hr, the maximum hepatic clearance. There must be some other routes of elimination.
- 2. Drug Y follows a one-compartment model after an IV bolus administration. 66 mg is given to a 70kg male patient by IV bolus. The concentrations at 0.5 and 3 hours are 0.236 μg/mL and 0.042 μg/mL, respectively.
 - a. Calculate the elimination rate constant k_e
 - b. Calculate C₀
 - c. Calculate V_d
 - d. Calculate the total clearance
 - e. Calculate AUC_{0-∞}
 - f. If the drug is given twice daily (8 a.m. and 8 p.m.)), the concentration at noon of day 30 is $0.021\mu g/mL$. What will be the concentration right before the second dose of that day (8 p.m.)?

Answers:

- a. $k_e = -(\ln C_2 \ln C_1)/(t_2 t_1) = -(\ln 0.042 \ln 0.236)/(3 0.5) = 0.69 \text{ hr}^{-1}$
- b. Since C= $C_0e^{\text{-ket}}$, C_0 = $C/e^{\text{-ket}}$ = $0.236/e^{-0.69*0.5}$ = $0.33~\mu g/mL$ =0.33mg/L

- c. V_d=Dose/C₀=66/0.33=200 L
- d. $CL_{tot}=k_e*V_d=0.69*200=138 L$
- e. $AUC_{0-\infty}$ =Dose/CL_{tot}=66/138=0.478 mg*h/L
- f. C_{8pm} = $C_{noon}e^{-ket}$ = $0.021*e^{-0.69*8}$ = $8.4\times10^{-5}mg/L$
- 3. How will the following parameters change (increase \uparrow , decrease \downarrow , no change \leftrightarrow) for a low extraction drug which also undergoes renal elimination if f_u change from 0.2 to 0.8?
 - a. $V_d \uparrow$
 - b. E_H (hepatic extraction ratio) ↑
 - c. F (oral bioavailability) \leftrightarrow
 - d. CL_H (hepatic clearance) ↑
 - e. CLren↑
 - f. CLtot ↑
 - g. $AUC_{0-\infty} \downarrow$