PHA 5127 – Fall 2006 Homework #1

1. Identify which of the graphs below exhibit zero-order and first order kinetics. For which elimination is the half-life $(t_{1/2})$ dependent on the concentration? Write the equations and give explanations. (*total points* = 3)

Answer:

The plot on the left shows first-order kinetics because it is plotted on a semi-log scale that results in a straight line. (0.5 points)

$$C = C_0 * e^{-k_e t}$$
 $C = \frac{C_0}{2}$ at $t = t_{1/2}$

$$\frac{C_0}{2} = C_0 * e^{-k^* t_{1/2}}$$

$$\frac{1}{2} = e^{-k^* t_{1/2}}$$

$$\ln 2 = k * t_{1/2}$$

$$t_{1/2} = \frac{\ln 2}{k}$$
 : half – life is independent on concentration. (1 point)

The plot on the right shows zero-order kinetics because the plot on a linear scale results in a straight line. (**0.5points**)

$$C-C_0=-k\star t$$

$$C = C_0 - k * t$$
 $C = \frac{C_0}{2} at \ t = t_{1/2}$

$$\frac{C_0}{2} = C_0 - k * t_{1/2}$$

$$t_{1/2} = (C_0 - \frac{C_0}{2})/k$$

$$t_{1/2} = \frac{C_0}{2*k}$$
 : half – life is dependent on concentration. (1 point)

- 2. Fractions and amounts of drugs eliminated through zero and first order kinetics
 2a. Do fraction and amount of a drug eliminated through zero order kinetics change?
 Please, mark the right answer. (total points = 2)
 O Fraction changes, amount stays constant
 O Fraction stays constant, amount stays constant
 O Fraction changes, amount changes
 O Fraction stays constant, amount changes
 O Fraction stays constant, amount changes
 O Fraction stays constant, amount changes
- **2b.** Do fraction and amount of a drug eliminated through first order kinetics change? Please, mark the right answer.
 - O Fraction changes, amount stays constant
 - O Fraction stays constant, amount stays constant
 - O Fraction changes, amount changes
 - O Fraction stays constant, amount changes

(1 point)

3. Drug A is given to Mr. Guinea Pig as an i.v. bolus and distributes very rapidly throughout his entire body, resulting in the following concentration-time profile. Please determine the half-life $(t_{1/2})$ and the area under the concentration-time curve from time zero to infinity $(AUC_{0\to\infty})$ of that particular drug. Hint: Use the trapezoidal rule for the AUC calculation. (total points =3)

Time (h)	Conc. (mg/L)
0	99.9
1	51.3
2	25.7
3	13.1
5	3.3

Answer:

$$ke = \frac{\ln\left(\frac{C1}{C2}\right)}{(t2-t1)} = \frac{\ln\left(\frac{99.9}{51.3}\right)}{1-0} = 0.67 \,h^{-1}$$
 (0.5 points)

$$t_{_{1/2}} = \frac{0.693}{ke} = 1h \tag{0.5 points}$$

$$AUC_{t_{1\to t^{2}}} = \frac{C_{2} + C_{1}}{2} \bullet (t_{2} - t_{1})$$

$$AUC_{0\to\infty} = AUC_{0\to t_{x}} + AUC_{t_{x}\to\infty}$$

$$AUC_{t_{x}\to\infty} = C_{x} / k_{e}$$

$$AUC_{0\to\infty} = 75.6 + 38.5 + 19.4 + 16.4 + 4.9 =$$

$$= 154.8 \frac{mg * h}{L}$$
(2 points)

4. Additionally Mr. Guinea Pig receives drug B that is also given as an iv. bolus. It is known that drug B slows the elimination process of drug A down. How will the elimination rate constant (ke) and half-life ($t_{1/2}$) of drug A change? Answer briefly! (*total points* = **2**)

Answer:

When drug A is eliminated slower, its half-life will increase. (1 point)

Since
$$t_{1/2} = \frac{0.693}{ke} = 1h$$
, ke will decrease. (1 point)

Total points for homework #1:

Question #1: 3 Question #2: 2 Question #3: 3 Question #4: 2 Total: 10